Non-ideal Flame equations

Gandhali Kogekar, CSM

1. Continuity Equation

The overall continuity equation for unsteady flame can be “'written as

Dp  dp B

Note that D /Dt is the substantial derivative, given as
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V is the velocity vector and V is the divergence operator.

2. Momentum Equation
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Here T is the deviatoric stress tensor.

(Ref: Chemically reacting flows, second edition- Eq. 2.143, page 49)

3. Species Continuity Equation
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Where ji is the diffusive mass flux vector,
Je = pYiViy

Here Vi is the diffusion velocity for species k.
(Ref: Chemically reacting flows, second edition- Sections 3.5 and 3.6)

4. Energy Equation

The thermal energy equation is written as
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4.1 Term I

Now consider the term E from Eq. 6. Since enthalpy of the mixture depends on the temperature,

pressure and composition (h = h(T, P,Y})), this term can be written as
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(This term is calculated in a document written for Peng-Robinson EoS).
Using this definition, the term A in Eq. 7 simplifies to
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4.1.2 Term B
From Eq. 7, consider the term,
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This term can be calculated using Maxwell’s relations:
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Substituting above equation in 7, the term B can be calculated as
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4.1.3 Term C
Consider the term C in Eq. 7
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Let i and X be mass and mole fractions of species k respectively.
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where W is a mean molecular weight of the mixture. The total mass of the system be M (= Wnr).

Hence,
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Since Yy, = f(ng, M, W}), using chain rule,
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Partial derivative with respect to Wj is not considered here, since molecular weight Wy is constant.

Also since h is an intensive property, its derivative with respect to total mass M is zero. Thus
simplifying above equation,
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Mass based individual species enthalpies are defined as
M
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Now considering the term C in Eq. 7,
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4.2 Term I
Combining Eq.s 9, 15 and 28, the Dh/Dt term in Eq. 7 simplifies to
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4.3 Energy equation: Revisited
Substituting Eq. 29 in Eq. 6, the energy equation becomes
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The species continuity equation can be given as
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Substituting Eq. 33 in energy equation,
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Now expanding enthalpy-flux term on the right hand side as
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The energy equation becomes
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Canceling common terms from both sides,

A iy
pcp,mlx Z hk LUWA; 3T + V- (AVT) — ;Jk . th +@
DT Dp v r _ K
Pepmix Ty = 3prk —zl:hk(ka)—f—V-()\VT)—kZ:ljk.th—i—fI)

=5tV (AVT) = > V- hji + @

K
+V~(>\VT)—ZV-hkjk+<I>

(33)

(34)

(36)



Now consider the enthalpy flux term from Eq. 38,
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This term can be written as Since hy = f(p,T,n;),i =1,2,....,K, this term can be written as
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The last term in Eq. 40 can also be represented as
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Since m; does not depend on my, this term simplifies to
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Thus the enthalpy flux term becomes
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Since expression for hj depends on the choice of equation of state (EoS), the term ®j with partial
derivatives of h; can not be generalized further. Also calculation of this term at each grid point
and for each species is computationally expensive. Instead, evaluating hy at each grid point and
taking its gradient directly will be more beneficial. “'If you want to expand Vhyg, I think there are
additional terms, analogous the the expansion of Dh/Dt, since in general hy, = f(T,p, Y)). However,
I don’t think this expansion is necessary. When solving this equation, we can always evaluate hy,
from the at each grid point and take the gradient directly. It’s only where time derivatives of h
appear that we need to eliminate them in order to have T as the state variable. “*Yes, after Franklin
raised the point, Gandhali and I worked out the additional terms here. If I remember correctly, the
only term that remained was another pressure term with an expansion coefficient (which we would
neglect, at least for now). Gandhali - can you add those extra terms in? Regarding expanding Vhy
vs. evaluating it directly, the only possible concern is that state evaluations can tend to be expensive,
for the real gas EoS. Would it be cheaper to evaluate a single state to get ¢, at an interface, rather
than hj at each volume center? Not certain, but it is a concern...

Now using the definition of specific heat,
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Equation 40 can be further simplified as
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Hence, the energy equation 38 becomes
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Also note that volume expansivity (or coefficient of thermal expansion) is defined as
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Using this definition, the energy equation reduces to
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4.3.1 Term D
Consider the term oh
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As calculated in Sec. 4.1.2,
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Since v = 1/px and jr = pY; Vi, we get
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Using pi, = pYy,
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Simplifying,
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4.4 Energy equation
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For Ideal gas EoS, «,, = 1/T, hence energy equation in this case becomes
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Usually at atmospheric conditions, c,, ~ 10~3. However, in case of near-critical flows, we might need
to consider the pressure term. “'Handling the case where this is important would be quite an un-
dertaking — this would require solving a compressible formulation of the flame governing equations,
which I suspect would lead to some interesting numerical challenges.
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5. 1D Flame equations

Consider a one dimensional co-ordianate system with axial direction z. Using Eq.s 1, 3, 4 and 60

and ignoring other two directions, we get simplified governing equations as follows:

Continuity equation
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Species continuity equation
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Where j is the diffusive mass flux in axial direction,

Je = pYruk

Here uy, is the diffusion velocity for species k.

Energy equation
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The dissipation function ® can be given as
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(Ref: Chemically reacting flows, second edition- Eq. 3.201, page 113)
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At very high pressures, the pressure derivative is often small and can be neglected. The dissipation

rate @, being very small can also be ignored.
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6. Appendix

6.1 Molar and mass based enthalpies and specific heats

Let mass and molar based mixture enthalpies be h and h. The mixture molecular weight is W.
Converting to mass based quantities,
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6.2 Derivative of W
The mean molecular weight of the mixture is given as
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7. RLS Note: Energy Equation Term C

I think there are a couple of issues in the derivation of the energy equation, specifically involving term
C in Eq. 7. First, I think there is a problem with what is held constant when taking dh/0Y}, and
the inconsistency in trying to hold all other mass fractions constant and also satisfying > Y = 1.
As an alternative, the specific enthalpy h can be considered as a function of species masses my, rather
than mass fractions Yj:

h=h(p,T,my,...,mg) (82)

The substantial derivative of the enthalpy can then be written as:
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which avoids the inconsistency of trying to take derivatives with respect to Y; while holding all other
mass fractions constant and also satisfying the constraint that > Y = 1.
For the purpose of evaluating term C, we can write:
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Therefore, the first part of term C can be written as
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with the last step utilizing the constraint that > DY} /Dt = 0. So, in the end, term C works out to
be the same thing, but not in quite the same way.

As an aside, the way I approached this was from trying to resolve some confusion I had about Eq.
26, which does not seem to work out even in the case of a simple ideal mixture of two components.
For example, let

h = aY, + bY} (94)

for which the partial species enthalpy of species a is simply h, = a. The right hand side of Eq. 26
is then
he —h=a— (aY, + bY3) (95)

We can evaluate 0h/JY, either holding Y} constant or holding > Y} constant. For these two methods,
we get:
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which is clearly not the same as Eq. 26. In addition, this equation does work with the EOS given
in Eq. 94.

8. RLS: Enthalpy flux term

I think the species partial enthalpy hy (Is there a more correct term for this? I would say “partial
molar enthalpy” if we were working on a molar basis, but we're not) is also dependent on my, or Y,
and so these gradients also need to be included in the expansion of the enthalpy flux term (assuming
that you want to expand it in the first place). Consider a binary mixture with an interaction term:

h = aY, + bY; + aY,Y, (104)
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To find h,, write this in terms of actual masses:

Mg mp Mgy

h = b 105

ama+mb+ ma+mb+a(ma+mb)2 (105)

H = (mq +my)h = amg + bmy + amgmp(mg +my) ™" (106)
O0H

he = 5 = ¢ + amy(mg +mp) "t — amgemy(mg + mp) 2 (107)

he = a + oYy, — aY,Y, (108)

So, in general, hy, = f(T,p, Y1,..., Yk ) and the expansion of Vhy, by the chain rule is something like
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Which again leaves us with the conflicting demands of satisfying both > Y, = 1 and holding the
other Y; constant. In any case, calculating the derivatives of hj with respect to T', p, and Y; (or
perhaps m;) is an additional burden that I imagine we would like to avoid.
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