
Non-ideal Flame equations

Gandhali Kogekar, CSM

1. Continuity Equation

The overall continuity equation for unsteady flame can be c1written as c1SCD: FYI - I
have added a
package to
enable track
changes. You can
also ’annote’,
’remove,’ ’add’,
and ’change’

Dρ

Dt
=
∂ρ

∂t
+ ∇ · (ρV ) = 0 (1)

Note that D/Dt is the substantial derivative, given as

D

Dt
=

∂

∂t
+ V ·∇ (2)

V is the velocity vector and ∇ is the divergence operator.

2. Momentum Equation

ρ
DV

Dt
= ρ

[
∂V

∂t
+ (V ·∇)V

]
= f −∇p+ ∇ · T ′ (3)

Here T ′ is the deviatoric stress tensor.
(Ref: Chemically reacting flows, second edition- Eq. 2.143, page 49)

3. Species Continuity Equation

ρ
DYk
Dt

= −∇ · jk + ω̇kWk (4)

Where jk is the diffusive mass flux vector,

jk = ρYkV k (5)

Here V k is the diffusion velocity for species k.
(Ref: Chemically reacting flows, second edition- Sections 3.5 and 3.6)

4. Energy Equation

The thermal energy equation is written as

ρ
Dh

Dt︸ ︷︷ ︸
I

=
Dp

Dt
+ ~∇ · (λ∇T )−

K∑
k=1

∇ · hkjk + Φ (6)
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4.1 Term I

Now consider the term Dh
Dt from Eq. 6. Since enthalpy of the mixture depends on the temperature,

pressure and composition (h = h(T, P, Yk)), this term can be written as

ρ
Dh

Dt︸ ︷︷ ︸
I

= ρ

 ∂h

∂T

∣∣∣∣
p,Yk

DT

Dt︸ ︷︷ ︸
A

+
∂h

∂p

∣∣∣∣
T,Yk

Dp

Dt︸ ︷︷ ︸
B

+

k∑
1

∂h

∂Yk

∣∣∣∣
T,p

DYk
Dt︸ ︷︷ ︸

C

 (7)

4.1.1 Term A

Define
∂h

∂T

∣∣∣∣
p,Yk

= cp,mix (8)

(This term is calculated in a document written for Peng-Robinson EoS).
Using this definition, the term A in Eq. 7 simplifies to

A =
∂h

∂T

∣∣∣∣
p,Yk

DT

Dt
= cp,mix

DT

Dt
(9)

4.1.2 Term B

From Eq. 7, consider the term,
∂h

∂p

∣∣∣∣
T,Yk

(10)

This term can be calculated using Maxwell’s relations:

dh = Tds+ vdp (11)

and:
∂v

∂T

∣∣∣∣
p

= −∂s
∂p

∣∣∣∣
T

. (12)

Hence
∂h

∂p

∣∣∣∣
T,Yk

= T
∂s

∂p

∣∣∣∣
T,Yk

+ v, (13)

and therefore:
∂h

∂p

∣∣∣∣
T,Yk

= v − T ∂v
∂T

∣∣∣∣
p,Yk

(14)

Substituting above equation in 7, the term B can be calculated as

B =

[
v − T ∂v

∂T

∣∣∣∣
p,Yk

]
Dp

Dt
(15)
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4.1.3 Term C

Consider the term C in Eq. 7

C =

k∑
1

∂h

∂Yk

∣∣∣∣
T,p

DYk
Dt

(16)

Let Yk and Xk be mass and mole fractions of species k respectively.

Xk =
nk
nT

, Yk =
nkWk

nTW̄
=
Wk

W̄
Xk (17)

where W̄ is a mean molecular weight of the mixture. The total mass of the system be M (= W̄nT).
Hence,

Yk =
nkWk

M
(18)

Since Yk = f(nk,M,Wk), using chain rule,

∂h

∂Yk
=

(
∂h

∂nk

∂nk
∂Yk

) ∣∣∣∣
M,T,p

+

(
∂h

∂M

∂M

∂Yk

) ∣∣∣∣
nk,T,p

(19)

Partial derivative with respect to Wk is not considered here, since molecular weight Wk is constant.
Also since h is an intensive property, its derivative with respect to total mass M is zero. Thus
simplifying above equation,

∂h

∂Yk

∣∣∣∣
T,p

=
M

Wk

(
∂h

∂nk

) ∣∣∣∣
M,T,p

+ 0 = M

(
∂h

∂Wknk

) ∣∣∣∣
M,T,p

(20)

Since mk = nkWk and Wk is constant,

∂h

∂Yk

∣∣∣∣
T,p

= M

(
∂h

∂mk

) ∣∣∣∣
M,T,p

=

(
∂Mh

∂mk

) ∣∣∣∣
T,p

− h
(
∂M

∂mk

) ∣∣∣∣
h,T,p

(21)

Mass based individual species enthalpies are defined as

hk =
∂(Mh)

∂mk

∣∣∣∣
T,p,mj 6=k

(22)

Hence,
∂h

∂Yk

∣∣∣∣
T,p

= hk − h
(
∂M

∂mk

) ∣∣∣∣
h,T,p

(23)

∂h

∂Yk

∣∣∣∣
T,p

= hk − h

(
∂

∂mk

k∑
1

mk

)∣∣∣∣
h,T,p

= hk − h× 1 (24)

Hence,
∂h

∂Yk

∣∣∣∣
T,p

= hk − h (25)

Now considering the term C in Eq. 7 ,

C =

k∑
1

∂h

∂Yk

∣∣∣∣
T,p

DYk
Dt

=

k∑
1

(hk − h)
DYk
Dt

(26)

C =

k∑
1

hk
DYk
Dt
− h

k∑
1

DYk
Dt

=

k∑
1

hk
DYk
Dt
− h D

Dt

k∑
1

Yk (27)

Simplifying,

C =

k∑
1

hk
DYk
Dt

(28)
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4.2 Term I

Combining Eq.s 9, 15 and 28, the Dh/Dt term in Eq. 7 simplifies to

Dh

Dt
= cp,mix

DT

Dt
+

[
v − T ∂v

∂T

∣∣∣∣
p,Yk

]
Dp

Dt
+

k∑
1

hk
DYk
Dt

(29)

4.3 Energy equation: Revisited

Substituting Eq. 29 in Eq. 6, the energy equation becomes

ρ

[
cp,mix

DT

Dt
+

[
v − T ∂v

∂T

∣∣∣∣
p,Yk

]
Dp

Dt
+

k∑
1

hk
DYk
Dt

]
=
Dp

Dt
+∇ · (λ∇T )−

K∑
k=1

∇ · hkjk + Φ (30)

ρcp,mix
DT

Dt
+ ρ

(
k∑
1

hk
DYk
Dt

)
=
Dp

Dt

[
1− ρv + ρT

∂v

∂T

∣∣∣∣
p,Yk

]
+∇ · (λ∇T )−

K∑
k=1

∇ · hkjk + Φ (31)

Note that ρv = 1,

ρcp,mix
DT

Dt
+ ρ

(
k∑
1

hk
DYk
Dt

)
=
Dp

Dt

[
ρT

∂v

∂T

∣∣∣∣
p,Yk

]
+∇ · (λ∇T )−

K∑
k=1

∇ · hkjk + Φ (32)

The species continuity equation can be given as

ρ
DYk
Dt

= −∇ · jk + ω̇Wk (33)

Substituting Eq. 33 in energy equation,

ρcp,mix
DT

Dt
+

k∑
1

hk (−∇ · jk + ω̇Wk) =
Dp

Dt

[
ρT

∂v

∂T

∣∣∣∣
p,Yk

]
+∇ · (λ∇T )−

K∑
k=1

∇ · hkjk + Φ (34)

Now expanding enthalpy-flux term on the right hand side as

K∑
k=1

∇ · hkjk =

K∑
k=1

jk · ∇hk +

K∑
k=1

hk∇ · jk (35)

The energy equation becomes

ρcp,mix
DT

Dt
+

k∑
1

hk (−∇ · jk + ω̇Wk)

=
Dp

Dt

[
ρT

∂v

∂T

∣∣∣∣
p,Yk

]
+∇ · (λ∇T )−

K∑
k=1

jk · ∇hk −
K∑

k=1

hk∇ · jk + Φ

(36)

Canceling common terms from both sides,

ρcp,mix
DT

Dt
+

k∑
1

hk (ω̇Wk) =
Dp

Dt

[
ρT

∂v

∂T

∣∣∣∣
p,Yk

]
+∇ · (λ∇T )−

K∑
k=1

jk · ∇hk + Φ (37)

ρcp,mix
DT

Dt
=
Dp

Dt

[
ρT

∂v

∂T

∣∣∣∣
p,Yk

]
−

k∑
1

hk (ω̇Wk) +∇ · (λ∇T )−
K∑

k=1

jk · ∇hk + Φ (38)

4



Now consider the enthalpy flux term from Eq. 38,

K∑
k=1

jk · ∇hk (39)

This term can be written as Since hk = f(p, T, ni), i = 1, 2, ....,K, this term can be written as

K∑
k=1

jk · ∇hk =

K∑
k=1

jk ·

[(
∂hk
∂T

)
∇T +

(
∂hk
∂p

)
∇p+

K∑
i=1

(
∂hk
∂ni

)
∇ni

]
(40)

Since

hk =
∂(Mh)

∂mk

∣∣∣∣
T,p,mj 6=k

(41)

The last term in Eq. 40 can also be represented as

K∑
i=1

(
∂hk
∂ni

)
∇ni =

K∑
i=1

∂

∂mk

(
∂Mh

∂mi

)
∇mi =

K∑
i=1

∂hi
∂mk

∇mi (42)

Since mi does not depend on mk, this term simplifies to

K∑
i=1

(
∂hk
∂ni

)
∇ni =

∂

∂mk

K∑
i=1

hi∇mi (43)

Thus the enthalpy flux term becomes

K∑
k=1

jk · ∇hk =

K∑
k=1

jk ·

[(
∂hk
∂T

)
∇T +

(
∂hk
∂p

)
∇p+

∂

∂mk

K∑
i=1

hi∇mi

]
(44)

Define

Φk =

K∑
k=1

jk ·
∂

∂mk

K∑
i=1

hi∇mi (45)

Since expression for hk depends on the choice of equation of state (EoS), the term Φk with partial
derivatives of hi can not be generalized further. Also calculation of this term at each grid point
and for each species is computationally expensive. Instead, evaluating hk at each grid point and
taking its gradient directly will be more beneficial. c1If you want to expand ∇hk, I think there are c1RLS: Text

added.additional terms, analogous the the expansion of Dh/Dt, since in general hk = f(T, p, Yk). However,
I don’t think this expansion is necessary. When solving this equation, we can always evaluate hk
from the at each grid point and take the gradient directly. It’s only where time derivatives of h
appear that we need to eliminate them in order to have T as the state variable. c2Yes, after Franklin c2SCD: Text

added.raised the point, Gandhali and I worked out the additional terms here. If I remember correctly, the
only term that remained was another pressure term with an expansion coefficient (which we would
neglect, at least for now). Gandhali - can you add those extra terms in? Regarding expanding ∇hk
vs. evaluating it directly, the only possible concern is that state evaluations can tend to be expensive,
for the real gas EoS. Would it be cheaper to evaluate a single state to get cp,k at an interface, rather
than hk at each volume center? Not certain, but it is a concern...
Now using the definition of specific heat,

cp,k =

(
∂hk
∂T

) ∣∣∣∣
p,Yk

(46)
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Equation 40 can be further simplified as

K∑
k=1

jk · ∇hk =

K∑
k=1

cp,k(jk · ∇T ) +

K∑
k=1

jk ·
(
∂hk
∂p

)
∇p+ Φk (47)

Hence, the energy equation 38 becomes

ρcp,mix
DT

Dt
=

[
ρT

∂v

∂T

∣∣∣∣
P,Yk

]
Dp

Dt
−

k∑
1

hkω̇Wk +∇ · (λ∇T )−
K∑

k=1

cp,k(jk · ∇T )

−
K∑

k=1

jk ·
(
∂hk
∂p

)
∇p− Φk + Φ

(48)

Note that the term ∂v
∂T

∣∣∣∣
p,Yk

is calculated as

∂v

∂T

∣∣∣∣
p,Yk

=

∂p
∂T

∣∣∣∣
V,Yk

∂p
∂v

∣∣∣∣
T,Yk

(49)

Also note that volume expansivity (or coefficient of thermal expansion) is defined as

αv =
1

v

∂v

∂T

∣∣∣∣
p,Yk

(50)

Using this definition, the energy equation reduces to

ρcp,mix
DT

Dt
= (Tαv)

Dp

Dt
−

k∑
1

hkω̇Wk+∇·(λ∇T )−
K∑

k=1

cp,kjk·∇T−
K∑

k=1

jk ·
(
∂hk
∂p

)
∇p︸ ︷︷ ︸

D

−Φk+Φ (51)

4.3.1 Term D

Consider the term

D =
∑
k

jk ·
(
∂hk
∂p

)
∇p (52)

As calculated in Sec. 4.1.2,
dh

dp

∣∣∣∣
T,Yk

= v − T ∂v
∂T

∣∣∣∣
p,Yk

(53)

Similarly, we have,
dhk
dp

∣∣∣∣
T,Yk

= vk − T
∂vk
∂T

∣∣∣∣
p,Yk

(54)

Define coefficient of thermal expansion for a species k as

αv,k =
1

vk

∂vk
∂T

∣∣∣∣
p,Yk

(55)

Therefore,

D =
∑
k

jk · vk (1− Tαv,k)∇p (56)
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Since vk = 1/ρk and jk = ρYkVk, we get

D =
∑
k

1

ρk
(1− Tαv,k) ρYkVk · ∇p (57)

Using ρk = ρYk,

D =
∑
k

(1− Tαv,k)Vk · ∇p (58)

Simplifying,

D =

[∑
k

Vk −
∑
k

Tαv,kVk

]
· ∇p (59)

4.4 Energy equation

ρcp,mix
DT

Dt
= (Tαv)

Dp

Dt
−

k∑
1

hkω̇Wk +∇ · (λ∇T )−
K∑

k=1

cp,kjk · ∇T

−
K∑

k=1

(1− Tαv,k)(Vk · ∇p) + Φ

(60)

For Ideal gas EoS, αv = 1/T , hence energy equation in this case becomes

ρcp,mix
DT

Dt
=
Dp

Dt
−

k∑
1

hkω̇Wk +∇ · (λ∇T )−
K∑

k=1

cp,kjk · ∇T − Φk + Φ (61)

Usually at atmospheric conditions, αv ≈ 10−3. However, in case of near-critical flows, we might need
to consider the pressure term. c1Handling the case where this is important would be quite an un- c1RLS: Text

added.dertaking – this would require solving a compressible formulation of the flame governing equations,
which I suspect would lead to some interesting numerical challenges.
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5. 1D Flame equations

Consider a one dimensional co-ordianate system with axial direction z. Using Eq.s 1, 3, 4 and 60
and ignoring other two directions, we get simplified governing equations as follows:

Continuity equation
∂ρ

∂t
+
∂(ρu)

∂z
= 0 (62)

Momentum equation

ρ
∂u

∂t
+ ρu

∂u

∂z
= −∂p

∂z
+

∂

∂z

(
2µ
∂u

∂z
+ κ∇ · V

)
(63)

Using Stokes’ hypothesis,

κ+
2

3
µ = 0 (64)

ρ
∂u

∂t
+ ρu

∂u

∂z
= −∂p

∂z
+

∂

∂z

(
4

3
µ
∂u

∂z

)
(65)

Species continuity equation

ρ
DYk
Dt

= − ∂

∂z
jk + ω̇kWk (66)

Where jk is the diffusive mass flux in axial direction,

jk = ρYkuk (67)

Here uk is the diffusion velocity for species k.

Energy equation

ρcp,mix
DT

Dt
= (Tαv)

Dp

Dt
−

k∑
1

hkω̇kWk +
∂

∂z

(
λ
∂T

∂z

)
−

K∑
k=1

cp,kjk
∂T

∂z
+ Φ (68)

The dissipation function Φ can be given as

Φ = (2µ+ κ)

(
∂u

∂z

)2

=
4

3
µ

(
∂u

∂z

)2

(69)

(Ref: Chemically reacting flows, second edition- Eq. 3.201, page 113)
At very high pressures, the pressure derivative is often small and can be neglected. The dissipation
rate Φ, being very small can also be ignored.

ρcp,mix
DT

Dt
= −

k∑
1

hkω̇kWk +
∂

∂z

(
λ
∂T

∂z

)
−

K∑
k=1

cp,kjk
∂T

∂z
(70)
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6. Appendix

6.1 Molar and mass based enthalpies and specific heats

Let mass and molar based mixture enthalpies be h and h̄. The mixture molecular weight is W̄ .
Converting to mass based quantities,

h =
h̄

W̄
(71)

Define mass based individual enthalpy as

hk =
∂(Mh)

∂mk

∣∣∣∣
p,V,mj 6=mk

=
1

Wk

∂(nTW̄h)

∂nk

∣∣∣∣
p,V,nj 6=nk

(72)

Using Eq. 71,

hk =
1

Wk

∂(nTh̄)

∂nk

∣∣∣∣
p,V,nj 6=nk

(73)

Hence,

hk =
h̄k
Wk

(74)

Define specific heat capacities at constant pressure as

c̄p,k =
∂h̄k
∂T

∣∣∣∣
p,V,nj

, cp,k =
∂hk
∂T

∣∣∣∣
p,V,mj

(75)

Consider

cp,k =
∂hk
∂T

∣∣∣∣
p,V,mj

=
∂

∂T

(
h̄k
Wk

)
(76)

cp,k =
1

Wk

∂h̄k
∂T

=
1

Wk
c̄p,k (77)

6.2 Derivative of W̄

The mean molecular weight of the mixture is given as

W̄ =

K∑
i=1

ni
nT

Wi (78)

∂W̄

∂nk
=

∂

∂nk

K∑
i=1

ni
nT

Wi =
∂nk
∂nk

Wk

nT
+
∂nT
∂nk

K∑
i=1

−ni
n2T

Wi (79)

∂W̄

∂nk
=
Wk

nT
− 1

nT
W̄ (80)

∂W̄

∂nk
=
Wk − W̄
nT

(81)
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7. RLS Note: Energy Equation Term C

I think there are a couple of issues in the derivation of the energy equation, specifically involving term
C in Eq. 7. First, I think there is a problem with what is held constant when taking ∂h/∂Yk, and
the inconsistency in trying to hold all other mass fractions constant and also satisfying

∑
Yk = 1.

As an alternative, the specific enthalpy h can be considered as a function of species masses mk rather
than mass fractions Yk:

h = h(p, T,m1, . . . ,mK) (82)

The substantial derivative of the enthalpy can then be written as:

ρ
Dh

Dt︸ ︷︷ ︸
I

= ρ

 ∂h

∂T

∣∣∣∣
p,m1...K

DT

Dt︸ ︷︷ ︸
A

+
∂h

∂p

∣∣∣∣
T,m1...K

Dp

Dt︸ ︷︷ ︸
B

+

K∑
k=1

∂h

∂mk

∣∣∣∣
T,p,mi6=k

Dmk

Dt︸ ︷︷ ︸
C

 (83)

which avoids the inconsistency of trying to take derivatives with respect to Yk while holding all other
mass fractions constant and also satisfying the constraint that

∑
Yk = 1.

For the purpose of evaluating term C, we can write:

H = mh =

(
K∑

k=1

mk

)
h (84)

hk ≡
∂H

∂mk

∣∣∣∣
T,p,mi6=k

=
∂

∂mk

[(
K∑

k=1

mk

)
h

]
T,p,mi6=k

(85)

= m
∂h

∂mk

∣∣∣∣
T,p,mi6=k

+
∂m

∂mk

∣∣∣∣
T,p,mi6=k

h (86)

hk = m
∂h

∂mk

∣∣∣∣
T,p,mi6=k

+ h (87)

Therefore, the first part of term C can be written as

∂h

∂mk

∣∣∣∣
T,p,mi6=k

=
hk − h
m

(88)

We can also write
Dmk

Dt
= m

DYk
Dt

(89)

Then term C becomes:

C =

K∑
k=1

∂h

∂mk

∣∣∣∣
T,p,mi6=k

Dmk

Dt
(90)

=

K∑
k=1

(hk − h)
DYk
Dt

(91)

=

K∑
k=1

hk
DYk
Dt
− h

K∑
k=1

DYk
Dt

(92)

=

K∑
k=1

hk
DYk
Dt

(93)
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with the last step utilizing the constraint that
∑
DYk/Dt = 0. So, in the end, term C works out to

be the same thing, but not in quite the same way.
As an aside, the way I approached this was from trying to resolve some confusion I had about Eq.

26, which does not seem to work out even in the case of a simple ideal mixture of two components.
For example, let

h = aYa + bYb (94)

for which the partial species enthalpy of species a is simply ha = a. The right hand side of Eq. 26
is then

ha − h = a− (aYa + bYb) (95)

We can evaluate ∂h/∂Ya either holding Yb constant or holding
∑
Yk constant. For these two methods,

we get:

∂h

∂Ya

∣∣∣∣
Yb

= a (96)

∂h

∂Ya

∣∣∣∣∑
Y

= a− b (97)

Neither of which are equivalent to Eq. 95. Instead, ∂h/∂Yk can be found from:

hk ≡
∂H

∂mk

∣∣∣∣
T,p,mi6=k

=
∂

∂mk

[(
K∑
i=1

mi

)
h

]
T,p,mi6=k

(98)

= m
∂h

∂Yk

∣∣∣∣
T,p,mi6=k

∂Yk
∂mk

∣∣∣∣
T,p,mi6=k

+ h (99)

c1 c2 c3 We can find ∂Yk/∂mk by writing: c1gkogekar: The
term dYk/dmk in
Eq. 87 is
evaluated at
constant m
(product rule in
Eq.87). Hence,
right-hand side of
Eq. 89 becomes
(1/m). This
eventually gives
back Eq. 28.

c2RLS: I
disagree. The
partial species
enthalpy is
defined with the
mass of all other
species held
constant, not at
constant total
mass.
c3SCD: Gandhali
and I met, and
we agree with
you, Ray. There
was a slight
confusion on our
end that we
cleared up, by
meeting.

Yk ≡
mk∑K
i=1mi

(100)

∂Yk
∂mk

∣∣∣∣
T,p,mi6=k

=
1

m
− mk

m2
=

1− Yk
m

(101)

From which it follows that

hk =
∂h

∂Yk

∣∣∣∣
T,p,

∑
Y

(1− Yk) + h (102)

∂h

∂Yk

∣∣∣∣
T,p,

∑
Y

=
hk − h
1− Yk

(103)

which is clearly not the same as Eq. 26. In addition, this equation does work with the EOS given
in Eq. 94.

8. RLS: Enthalpy flux term

I think the species partial enthalpy hk (Is there a more correct term for this? I would say “partial
molar enthalpy” if we were working on a molar basis, but we’re not) is also dependent on mk or Yk,
and so these gradients also need to be included in the expansion of the enthalpy flux term (assuming
that you want to expand it in the first place). Consider a binary mixture with an interaction term:

h = aYa + bYb + αYaYb (104)
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To find ha, write this in terms of actual masses:

h = a
ma

ma +mb
+ b

mb

ma +mb
+ α

mamb

(ma +mb)2
(105)

H = (ma +mb)h = ama + bmb + αmamb(ma +mb)
−1 (106)

ha ≡
∂H

∂ma
= a+ αmb(ma +mb)

−1 − αmamb(ma +mb)
−2 (107)

ha = a+ αYb − αYaYb (108)

So, in general, hk = f(T, p, Y1, . . . , YK) and the expansion of ∇hk by the chain rule is something like

∇hk =
∂hk
∂T

∣∣∣∣
p,Yi

∇T +
∂hk
∂p

∣∣∣∣
T,Yi

∇p+

K∑
j=1

∂hk
∂Yj

∣∣∣∣
p,T,Yi6=j

∇Yj (109)

Which again leaves us with the conflicting demands of satisfying both
∑
Yk = 1 and holding the

other Yi constant. In any case, calculating the derivatives of hk with respect to T , p, and Yj (or
perhaps mj) is an additional burden that I imagine we would like to avoid.
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