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CHAPTER 6 Coupling Chemical and Thermal Analyses

PLUG-FLOW REACTOR

Assumptions

A plug-flow reactor represents an ideal reactor that has the fo]lowing altri
n Ules:

|. Steady-state, steady flow.

2. No mixing in the axial dircction. This implies that moleculyy ,
mass diffusion is negligible in the flow direction.

3. Uniform properties in the direction perpendicular to the flow, j.e . one-q

flow. This means that at any cross section, a single velocity, temperaty
tion, etc., completely characterize the flow.
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4. Ideal frictionless flow. This assumption allows the use of the simple Eyler
tion to relate pressure and velocity. Q.

5. Ideal-gas behavidr. This assumption allows simple state relations to be employ
torelate 7, P, p, ¥, and h. yed

Application of Conservation Laws

Our goal here is to develop a system of first-order ODEs whose solution describe
the reactor flow properties, including composition, as functions of distance, x. T
geometry and coordinate definition are schematically illustrated at the top of Fig. 61|,
Table 6.1 provides an overview of the analysis listing the physical and chemical prin-
ciples that generate 6 + 2N equations and a like number of unknown variables and
functions. The number of unknowns could be easily reduced by N, by recognizing tha
the species production rates, @, can be immediately expressed in terms of the mas
fractions (see Appendix 6A) without.the need 'to explicitly involve the ;. Explicily

Table 6.1 Overview of relationships and variables for plug-flow reactor with N species
Number of
Source of Equations Equations Variablgs er Derivatives Involved
Nl

Fundamental conservation I+N Eﬂﬂfﬂﬁ ,-=|‘2‘___,N),(b,(i=1~2--"'
principles: mass, dx’dx " dx'dx’ dk

X-momentum, ene rgy,

species
Mass action laws N wi=1,2,..,N)
Equation of state 1 dp dP ﬂ _M_wﬂ'i

dx'dx'dx' dx

Calorific equation of state 1 dh dT ﬂ(,‘:l 2 IR )

de'dx’ dx

Definition of mixture 1 dMW,, dy, N)

— =12,
molecular weight dx 'dx ¢ _//
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;?Um 6.11 Control volumes showing fluxes of mass, x-momentum, energy, and species
0 pIUQ*ﬂow reactor.

m:ﬁ;llg them »however, clearly reminds us of the importance of chemical reactions in
Own yis, Although not shown in Table 6. 1, the following parameters are treated as
GUantities, or functions, and are necessary to obtain a solution: m, k,(T), A(x),
ncuolgng ¢ area function A(x) defines the cross-sectional area of the reactor as a
P&mcular % thus, our model reactor could represent a nozzle, or a diffuser, or any
Sugg Stone dimensional geometry, and not just a constant cross-sectional device
itl *d by the top sketch in Fig. 6.11. The heat flux function Q”(x), although

. heatzlndlcatlng that the wall heat flux is known, is also intended to indicate that

"X may be calculated from a given wall-temperature distribution.

A , ,.
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(o the fluxes and control volumes illustrage in Fi,
e 1o

f Serct * ]
With 1 |L[I (ollowing conservation relationships: I,
sipve e !
casily der
rvation
ass Conse
" d(pv, A)
= (),
dx
x-Momentum Conservation
dpP dv,
—+pv, —=0.
d,l' d.t )

Energy Conservation

d(h+v2/2) N Q" P

= 0 (£
dx 1
Species Conservation
dY a) MW 0
d X pv" ' l‘.._':

The symbols v, and P represent the axial velocity and local perimeter of the rec
respectively. All of the other quantities have been defined previously. The dervz-
of these equations is left as an exercise for the reader (see problem 6.1).

To obtain a useful form of the equations where the individual variable dems
tives can be isolated, Eqns. 6.39 and 6.41 can be expanded and rearranged to yz:
the following:

1dp 1dv, 1d4

=0 (64
pdx v dx A dx
d ” - ;
_ii+v Q P =0. (=
dx dx m

The d)s appearing in Eqn, 6.42 can be expressed using Eqn. 431, with 0% v
transformed to Y;s,

The functional relationship of the ideal-gas calorific equation of sta

(64
h=hT, Y1),
can b : : .
"¢ exploited using the chain rule to relate dj/dx and dT/dx, yielding
dh 4T ¥ ay 6
PPl drad Wit :
To o diffe®
e c%mplete our mathematica] description of the plug-flow reactor, W¢ di
¢ 1deal-gas equation of state, i
(¢
P=pRTIMW
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Ldr 1 d T
_._—:—(_B.* lill__ | llﬂ”‘{”“_ (6.48)

Pdv pdx Tde MW dy '

mix

~ where the mixture nTnIcm!lnr weight derivative follows simply from its definition
3 cxprcgscd in terms of species mass fractions, i.e.,

N -l
el
- and
dﬂf‘”l]l‘ 2 & l ly
Sl w2, Y —— (6.50)
da MW, dx

~ Equations 6.40, 6.42, 6.43, 6.44, 6.46, 6.48, and 6.49 contain in a lincar fashion the
derivatives dp/dx, dv, /dx, dP/dx, dhildx, dY, ldx (= 1,2, ..., N), dT7dx, and
- MW, /dx. The number of equations can be reduced by eliminating some of the

derivatives by substitution. One logical choice is to retain the derivatives d7/dx,
dp/dx, and dY, /dx (i=1,2, ..., N). With this choice, the following equations con-

stitute the system of ODEs that must be integrated starting from an appropriate set

of initial conditions:

- v
B e YL Ul T
dp c, MW, \Adx ) vie,MW, 5 MW,

[ mix
dx ‘V2 )
Pl 1+—= |-pvi
c,T
(6.51)
N
EjI:_"i_ﬂE.fv_f(_l__d_ﬁ]__l__Eh‘@'MW“ (6.52)
dx pc,dx ¢, Adx ) v.pce, i
dy, _ oMW, (6.53)
dx pv,

plicity.

~ Note that in Eqns. 6.41 and 6.52, ¢ has been set to zero for simplicity
. quation added to

A residence time, 1,, can also be defined, and onc more ¢

the set:
dig 1 (6.54)
dx v,
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