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1 Electrochemical Potential

To quantify the effect of a material’s electric potential on the charge transfer rates, we
can invert the equation for electric potential to get the free energy U due to the electric
potential φ:

U = qφ (1)

the charge of a species q should be in coulombs, and can be written as Faraday’s constant
times the elementary charge of the ion z:

U = zFφ (2)

(for example, z = −1 for OH−). This leads to the electrochemical potential µ̃

µ̃ = µ+ zFφ (3)

The free energy driving force for an electrochemical reaction, then, is the change in elec-
trochemical potential:

∆G̃rxn =
∑

νkµ̃k =
∑

νkµk +
∑

νkzkFφk (4)

Some species k will be associated with the product potential φp, others with the reactant
phase φr. Because the reaction must balance charge, the sum of the νkzk must balance
between the two phases (i.e. the total charge leaving one phase must enter the other).
This sum can be re-labeled n, the total elementary charge transferred to the product phase:

∆G̃rxn = ∆Grxn + nF∆φ (5)

where ∆φ = φp − φr, with p and r are the product and reactant phases. The ‘product
phase’ must be that used to calculate n,

n =
∑
p

νkzk (6)

But the designation is largely arbitrary, since the reaction can go in either direction.
Consistency is all that matters - the signs of n and ∆φ are linked. Equilibrium is reached
when the total free energy of reaction ∆G̃run equals zero, which leads to the definition of
an equilibrium electric potential difference (or equilibrium voltage*) for a given state:

Eeq = Veq = ∆φeq =
−∆Grxn

nF
(7)

*note that the terms “electric potential” and “voltage” are frequently used interchange-
ably, but “voltage” technically refers to a difference in electric potential.

Recall that ∆Grxn is a function of conditions, such as P, T, and Xk. Each change in
conditions may result in a different Eeq. There is, therefore, no single “equilibrium con-
dition,” T , P , Xk. But rather, for each T, P,Xk, there is an electric potential difference
∆φeq which sets the reaction to equilibrium.



2 Charge Transfer Reaction Rates

2.1 Marcus Theory and Elementary Chemical Kinetics

To quantify the influence of the electrochemical potential on charge-transfer reaction rates,
recall that the thermodynamic equilibrium and the kinetic equilibrium are related. For a
non-electrochemical reaction, this is written as:(

kf
kr

)∗
= exp

(
−∆Go

rxn

RT

)
[C]

∑
νk (8)

where ∗ indicates the thermochemical reaction rate coefficients (i.e., in the absence of any
electric potential effects. Here, all the standard relationships between thermo properties
and Arrhenius parameters still apply, even for charge-transfer reactions). νk is the net
stoichiometric coefficient of species k and [C] is the total concentration (note that [C] is
probably not sufficiently generalized, but doesn’t really matter, for our purposes). For
the charge-transfer reaction, thermodynamic equilibrium is written as:

∆G̃rxn = ∆Grxn + nF∆φ = ∆Go
rxn +RT ln

(∏
Xνk
k

)
+ nF∆φ (9)

as with thermal kinetics, we can calculate a kinetic equilibrium coefficient by isolating∏
Xνk
k (again, note that the use of Xk assumes a certain thermodynamic model and can

be generalized further, but will suffice for our example):

kf
kr

= exp

(
−∆Go

rxn

RT

)
exp

(
−nF∆φ

RT

)
[C]

∑
νk =

(
kf
kr

)∗
exp

(
−nF∆φ

RT

)
(10)

where
(
kf
kr

)∗
is the ratio of the kinetic rate parameters for the non-electrochemical reac-

tion. So we know that the voltage difference affects the free energy of reaction, which
shifts the ratio of the rates for a charge-transfer reaction by exp

(−nF∆φ

RT

)
, but not how

this specifically effects the forward or reverse rates.

For this, we must realize that some fraction βf of the free energy change will affect the
forward reaction, while a fraction βr will affect the reverse reaction. For an elementary
charge-transfer reaction, we must have βf + βr = 1. For this case, letting β ≡ βf , we get:

kf
kr

=

(
kf
kr

)∗ exp
(−βnF∆φ

RT

)
exp

(
(1−β)nF∆φ

RT

) (11)

and therefore:

kf = k∗f exp

(
−βnF∆φ

RT

)
(12)

kr = k∗r exp

(
(1− β)nF∆φ

RT

)
(13)

pay careful attention to signs: recall that n here is the total charge number transferred.
If the net reaction moves one electron from a phase at φr to a phase at φp, then n = −1.



The rate of progress for a charge transfer reaction i is therefore:

q̇i = k∗f
∏

[Xk]
ν′k exp

(
−βnF∆φ

RT

)
− k∗r

∏
[Xk]

ν′′k exp

(
(1− β)nF∆φ

RT

)
(14)

The k∗f and k∗r are the standard chemical reaction rate coefficients, calculated according
to Arrhenius parameters or some other formulation.

The current density i can be written as:

i = nF q̇ (15)

Note that kinetic and thermodynamic equilibrium are reached when ∆φ = Eeq, from
eq. 7, above. So when ∆φ = Eeq, then i = 0.

2.2 Another Perspective: Free Energy Diagrams

But what is β? To determine the physical nature of the charge transfer coefficient β,
we turn to transition state theory. For the chemical reaction with no electric potential
difference, there is a free energy barrier ∆Go in both the anodic (∆Go

a) and cathodic
(∆Go

c) directions.

If we apply an electric potential across the interface, the change in free energy (nF∆φ)
affects the barrier in both the forward and reverse directions:
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Zooming in on the dashed box:
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we see that the transition state free energy increases by a fraction (1− β) of the total shift
nF∆φ. The height of the forward barrier, therefore, decreases by nF (∆φ− (1− β) ∆φ) =
βnF∆φ. Similarly, the reverse barrier increases by (1 − β)nF∆φ. The fraction β is de-
termined by the slope of the energy surface for the forward and reverse directions:
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(a) β < 1/2
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(b) β = 1/2
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(c) β > 1/2

This provides another pathway to understanding the exponential terms applied to the
forward and reverse rates in eq. 14. Rates are adjusted by exp

(
−∆Ea

RT

)
, where ∆Ea is

the change in the barrier height (−βnF∆φ for the forward reaction, and (1− β)nF∆φ
for the reverse reaction). Note that we could derive eq. 14 entirely from transition state
theory, if we desired.



2.3 The Bulter-Volmer Formulation

While our charge-transfer reaction rate in eq. 14 has a simple physical origin in state
variables, it can be computationally unwieldy. For a simpler representation, the reaction
rate is more commonly written in Butler-Volmer (B-V) form:

i = io

[
exp

(
αfnFη

RT

)
− exp

(
−αrnFη

RT

)]
(16)

where η = E−Eeq (or ∆φ−∆φeq) is the overpotential–the electric potential driving force
for the reaction in the forward direction, relative to the chemical potential driving force.

The variable io is known as the exchange current density. At equilibrium, while the
net rate is zero, there is progress in both the forward and reverse reactions, just at equal
rates. The exchange current density is this rate of one-way reactions at equilibrium. For
reactions moving back and forth at a fast rate, a little “nudge” by the electric potential
can lead to a fast rate of reaction (i.e., high current). For a low exchange current density,
it takes a larger driving force – a larger overpotential η – to reach high currents.

The α values correspond loosely to the β parameters in eq. 14, but the Bulter-Volmer
formulation is often applied for non-elementary reactions, in which αf + αr = 1 is not
necessarily true.∗ However, assuming β = αf and 1 − β = αr, the current density given
by eqs. 14 - 15 can be converted to eq. 16, with:

i◦ = nFk
∗(1−β)
f k∗βr

∏
[Xk]

(1−β)ν′k
∏

[Xk]
βν′′k , (17)

where ν ′k and ν ′′k are the forward and reverse stoichiometric coefficients, respectively, and
where [Xk] represents the generalized ‘activity concentraion’ used in Cantera.

∗Note that the B-V equation for global reactions is only true/appropriate if there is a
single rate-determining step in the global mechanism. Otherwise the entire idea of a ∆φeq

and therefore the calculation of η is a source of great ambiguity.

2.4 Bulter-Volmer “Flavors”

There are a few common variants to how B-V is typically implemented:

2.4.1 The Tafel Equation

For larger currents or large overpotentials η, the reverse rate (the second exponential in
eq. 16) rapidly approaches zero, and eq. 16 reduces to:

i = i◦ exp

(
βnF∆φ

RT

)
(18)

This form cannot produce equilibrium (i.e. i→ 0 only as η → −∞), but is a commonly-
used analytical form to recover i◦ and αf/αr from experimental data.



2.4.2 Constant i◦

Note that this is patently incorrect–i◦ is a function of local conditions–but may be mod-
erately appropriate within certain operating regimes (very low fuel utilization, constant
local composition, etc.). It is, therefore, not uncommon in electrochemical literature.

2.4.3 User-specified Reactant Orders

Some users may want to specify reactant orders for the exchange current density:

i◦ = nFk
∗(1−β)
f k∗βr

∏
[Xk]

nk,fwd

∏
[Xk]

nk,rev , (19)

where the orders nk,fwd and nk,rev replace (1− β)ν ′k and βν ′′k in eq. 19, respectively. Note
that this works in the B-V form, only, and not in the Marcus theory form, because the
net production rate for a species k from this reaction is:

ṡk,BV = νk ˙qBV = νk
i

nF
(20)

and thermodynamic consistency is maintained, as η is evaluated relative to:

∆φrev = −∆Grxn

nF
= −

∑
νkµk
nF

. (21)

with the actual νk used in eqs. 20 and 21, not the user-specified orders nk.

2.4.4 User-specified Species Dependency Functions

Disclosure: this is a longer-term “wouldn’t it be nice” goal, with a murky implementation.

Anyway: for mechanisms with a single rate-limiting step, assuming partial equilibrium for
all non-rate-limiting steps eliminates those reactions from the mechanism. One replaces
the concentration dependencies of intermediate species in eq. 19 with equilibrium expres-
sions. For one example, see eqs. 37–47 in Zhu, Kee, et al., J. Electrochem. Soc., 2005
(linked here). In that paper, eqs. 16 and 19 for a simple H2 oxidation reaction reduce to:

i = i◦

[
exp

(
(βRL + 1)Fη

RT

)
− exp

(
−βRLFη

RT

)]
, (22)

and

i◦ = i∗◦

(
pH2/p

∗
H2

)1/4
(pH2O)3/4

1 +
(
pH2/p

∗
H2

)1/2
. (23)

Here, βRL refers to the symmetry factor for the rate-limiting step and i∗◦ is the exchange
current density at a reference condition ∗ (where species partial pressures are p∗k).

Enabling partial-equilibrium functionality spares users from specifying/fitting unknown
rate constants for the equilibrated steps and reduces mechanism size. Functionally, a user
could write the full mechanism and just specify really fast rates for the equilibrated steps,
but a) this adds reactions to the mech that are not entirely necessary, and b) there can
be stiffness issues, if the rate chosen is too fast. That said, (i) the functional forms can be
quite complex, (ii) how we enable an interface for specifying them is not entirely clear,
and(iii) the number of users with the knowledge and interest in this functionality might
be rather limited, at present. But it may one day be relevant/useful, so I thought I’d just
plant a seed, in case anyone has an idea.

https://www.itcp.kit.edu/deutschmann/img/content/56_05_JECS_Kee_SOFC.pdf


3 Cantera Implementation

Here is the functionality I think we should enable in Cantera.

For all reactions, I think the user should be able to query the current density (both
for individual reactions and summing over all reactions for a given interface).

For specific reaction types (Marcus theory vs. Butler–Volmer):

3.1 Marcus Theory

3.1.1 User Inputs

For the ‘standard’ treatment described in sec. 2.1, things operate largely as they should.
Users should be able to:

• Pass in a kfwd

• Pass in i◦ and have it converted to an equivalent kfwd

3.1.2 Detection

We currently provide the following means of indicating an electrochemical reaction:

• Specify a β value

• Provide an i◦ value.

• In the absence of either of these, the reaction string is parsed to automatically detect
a charge-transfer reaction.

• I. Schoegl has suggested that we add some type of flag.

It think this is a good idea, but should be optional, on the user end. Correctly
evaluating the reaction driving forces is not a ‘special feature’ that a user needs to
request, imho.

But the larger question of when to parse the equation strings and when/how to mark
an ‘electrochemical’ reaction is worth evaluating. At present we parse all surface
reaction equation strings twice. Can we shift the labeling of echem reactions in some
way such that this designation is made during the ‘main’ reaction string parsing?
It would be nice.

• Another thought: I’ve got half a mind that we can derive a method to fold elec-
tric potential effects directly into the species activities, such that electrochemical
reactions don’t require any special handling.

Here, electric potential effects would be part of the activity calculation, where this
impact evaluates to multiplication by 1.0 for non-charge-transfer reactions. This
requires a little more thought, as it has both theoretical and implementation hurdles.
But it is worth exploring.



3.2 Butler–Volmer

First, given what I’m about to propose below, I do think that Butler–Volmer needs to
be its own, separate reaction type. While the main equation (eq. 16) can be converted
back to Marcus Theory, there are enough variants that justify special handling. This also
eliminates any need for detection of charge transfer.

3.2.1 User Inputs

The user should be able to:

• Pass in a kfwd and have it converted to an equivalent i◦.

• Pass in i◦ (likely via Arrhenius parameters).

• Pass in i∗◦ for a known reference state (known species concentrations), along with a
list of these reference concentrations [X∗k ]. The expression for i◦ then becomes:

i◦ = i∗◦
∏(

[Xk]

[X∗k ]

)(1−β)ν′k∏(
[Xk]

[X∗k ]

)βν′′k
(24)

• Pass in non-stoichiometric species orders for i◦

• An ‘options’ flag that allows the user to specify use of the Tafel equation (eq. 18).

3.2.2 Outputs

The user should also be able to query, for a given state:

• The exchange current density i◦

• The overpotential η = ∆φ−∆φeq.
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