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1 Definitions

The compressibility factor is given by
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where v is molar volume, p is pressure, R is the gas constant, and T is temper-
ature. This can also be written in terms of the molar volume
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1.1 Isothermal Compressibility

Isothermal compressibility is defined as
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This can alternatively be expressed in terms of the compressibility factor, which
requires the derivative of (2) with respect to pressure at constant temperature
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Substituting into (3) yields isothermal compressibility as a function of compress-

ibility factor
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where the first term is the ideal component and the second term is the real gas
deviation.




1.2 Thermal Expansion Coefficient

The volumetric thermal expansion coefficient is defined as
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Taking a similar approach as for the isothermal compressibility, the derivative
of molar volume with respect to temperature is
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substituting into (6) yields thermal expansion coefficient in terms of compress-
ibility factor
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where the first term is the ideal component and the second term is the real gas
deviation.

2 Peng-Robinson

The cubic form of the Peng-Robinson equation of state is given by
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2.1 Isothermal Compressibility

Taking the derivative of (9) with respect to pressure at constant temperature
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combining like terms gives
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then solving for the derivative of the compressibility factor yields
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where there derivatives of (10) and (11) are given by
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2.2 Thermal Expansion Coefficient

The derivative of (9) with respect to temperature at constant pressure will take
the same form as (12)
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where the derivative of (10) using the quotient rule is given by
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and the derivative of (11) is given by
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3 Redlich-Kwong

The cubic form is given by
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3.1 Isothermal Compressibility

Taking the derivative of (18) with respect to pressure at constant temperature
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combining like terms gives
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then rearranging to solve for the derivative of the compressibility factor yields

07 (B - 2) (%)T+(A+Z+2BZ) (%%)T .
<ap>T_ 322 -2Z+A-B- B? 21)
where the derivatives of (19) and (20) are given by
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3.2 Thermal Expansion Coefficient

The derivative of (18) with respect to temperature at constant pressure will
take the same form as (21)
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where the derivative of (19) using the quotient rule is given by
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and the derivative of (20) is given by
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