-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathchuck_fft.c
280 lines (236 loc) · 7.37 KB
/
chuck_fft.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
//-----------------------------------------------------------------------------
// name: chuck_fft.c
// desc: fft impl - based on CARL distribution
//
// authors: code from San Diego CARL package
// Ge Wang (gewang@cs.princeton.edu)
// Perry R. Cook (prc@cs.princeton.edu)
// date: 11.27.2003
//-----------------------------------------------------------------------------
#include "chuck_fft.h"
#include <stdlib.h>
#include <math.h>
//-----------------------------------------------------------------------------
// name: hanning()
// desc: make window
//-----------------------------------------------------------------------------
void hanning( float * window, unsigned long length )
{
unsigned long i;
double pi, phase = 0, delta;
pi = 4.*atan(1.0);
delta = 2 * pi / (double) length;
for( i = 0; i < length; i++ )
{
window[i] = (float)(0.5 * (1.0 - cos(phase)));
phase += delta;
}
}
//-----------------------------------------------------------------------------
// name: hamming()
// desc: make window
//-----------------------------------------------------------------------------
void hamming( float * window, unsigned long length )
{
unsigned long i;
double pi, phase = 0, delta;
pi = 4.*atan(1.0);
delta = 2 * pi / (double) length;
for( i = 0; i < length; i++ )
{
window[i] = (float)(0.54 - .46*cos(phase));
phase += delta;
}
}
//-----------------------------------------------------------------------------
// name: blackman()
// desc: make window
//-----------------------------------------------------------------------------
void blackman( float * window, unsigned long length )
{
unsigned long i;
double pi, phase = 0, delta;
pi = 4.*atan(1.0);
delta = 2 * pi / (double) length;
for( i = 0; i < length; i++ )
{
window[i] = (float)(0.42 - .5*cos(phase) + .08*cos(2*phase));
phase += delta;
}
}
//-----------------------------------------------------------------------------
// name: apply_window()
// desc: apply a window to data
//-----------------------------------------------------------------------------
void apply_window( float * data, float * window, unsigned long length )
{
unsigned long i;
for( i = 0; i < length; i++ )
data[i] *= window[i];
}
static float PI ;
static float TWOPI ;
void bit_reverse( float * x, long N );
//-----------------------------------------------------------------------------
// name: rfft()
// desc: real value fft
//
// these routines from the CARL software, spect.c
// check out the CARL CMusic distribution for more source code
//
// if forward is true, rfft replaces 2*N real data points in x with N complex
// values representing the positive frequency half of their Fourier spectrum,
// with x[1] replaced with the real part of the Nyquist frequency value.
//
// if forward is false, rfft expects x to contain a positive frequency
// spectrum arranged as before, and replaces it with 2*N real values.
//
// N MUST be a power of 2.
//
//-----------------------------------------------------------------------------
void rfft( float * x, long N, unsigned int forward )
{
static int first = 1 ;
float c1, c2, h1r, h1i, h2r, h2i, wr, wi, wpr, wpi, temp, theta ;
float xr, xi ;
long i, i1, i2, i3, i4, N2p1 ;
if( first )
{
PI = (float) (4.*atan( 1. )) ;
TWOPI = (float) (8.*atan( 1. )) ;
first = 0 ;
}
theta = PI/N ;
wr = 1. ;
wi = 0. ;
c1 = 0.5 ;
if( forward )
{
c2 = -0.5 ;
cfft( x, N, forward ) ;
xr = x[0] ;
xi = x[1] ;
}
else
{
c2 = 0.5 ;
theta = -theta ;
xr = x[1] ;
xi = 0. ;
x[1] = 0. ;
}
wpr = (float) (-2.*pow( sin( 0.5*theta ), 2. )) ;
wpi = (float) sin( theta ) ;
N2p1 = (N<<1) + 1 ;
for( i = 0 ; i <= N>>1 ; i++ )
{
i1 = i<<1 ;
i2 = i1 + 1 ;
i3 = N2p1 - i2 ;
i4 = i3 + 1 ;
if( i == 0 )
{
h1r = c1*(x[i1] + xr ) ;
h1i = c1*(x[i2] - xi ) ;
h2r = -c2*(x[i2] + xi ) ;
h2i = c2*(x[i1] - xr ) ;
x[i1] = h1r + wr*h2r - wi*h2i ;
x[i2] = h1i + wr*h2i + wi*h2r ;
xr = h1r - wr*h2r + wi*h2i ;
xi = -h1i + wr*h2i + wi*h2r ;
}
else
{
h1r = c1*(x[i1] + x[i3] ) ;
h1i = c1*(x[i2] - x[i4] ) ;
h2r = -c2*(x[i2] + x[i4] ) ;
h2i = c2*(x[i1] - x[i3] ) ;
x[i1] = h1r + wr*h2r - wi*h2i ;
x[i2] = h1i + wr*h2i + wi*h2r ;
x[i3] = h1r - wr*h2r + wi*h2i ;
x[i4] = -h1i + wr*h2i + wi*h2r ;
}
wr = (temp = wr)*wpr - wi*wpi + wr ;
wi = wi*wpr + temp*wpi + wi ;
}
if( forward )
x[1] = xr ;
else
cfft( x, N, forward ) ;
}
//-----------------------------------------------------------------------------
// name: cfft()
// desc: complex value fft
//
// these routines from CARL software, spect.c
// check out the CARL CMusic distribution for more software
//
// cfft replaces float array x containing NC complex values (2*NC float
// values alternating real, imagininary, etc.) by its Fourier transform
// if forward is true, or by its inverse Fourier transform ifforward is
// false, using a recursive Fast Fourier transform method due to
// Danielson and Lanczos.
//
// NC MUST be a power of 2.
//
//-----------------------------------------------------------------------------
void cfft( float * x, long NC, unsigned int forward )
{
float wr, wi, wpr, wpi, theta, scale ;
long mmax, ND, m, i, j, delta ;
ND = NC<<1 ;
bit_reverse( x, ND ) ;
for( mmax = 2 ; mmax < ND ; mmax = delta )
{
delta = mmax<<1 ;
theta = TWOPI/( forward? mmax : -mmax ) ;
wpr = (float) (-2.*pow( sin( 0.5*theta ), 2. )) ;
wpi = (float) sin( theta ) ;
wr = 1. ;
wi = 0. ;
for( m = 0 ; m < mmax ; m += 2 )
{
register float rtemp, itemp ;
for( i = m ; i < ND ; i += delta )
{
j = i + mmax ;
rtemp = wr*x[j] - wi*x[j+1] ;
itemp = wr*x[j+1] + wi*x[j] ;
x[j] = x[i] - rtemp ;
x[j+1] = x[i+1] - itemp ;
x[i] += rtemp ;
x[i+1] += itemp ;
}
wr = (rtemp = wr)*wpr - wi*wpi + wr ;
wi = wi*wpr + rtemp*wpi + wi ;
}
}
// scale output
scale = (float)(forward ? 1./ND : 2.) ;
{
register float *xi=x, *xe=x+ND ;
while( xi < xe )
*xi++ *= scale ;
}
}
//-----------------------------------------------------------------------------
// name: bit_reverse()
// desc: bitreverse places float array x containing N/2 complex values
// into bit-reversed order
//-----------------------------------------------------------------------------
void bit_reverse( float * x, long N )
{
float rtemp, itemp ;
long i, j, m ;
for( i = j = 0 ; i < N ; i += 2, j += m )
{
if( j > i )
{
rtemp = x[j] ; itemp = x[j+1] ; /* complex exchange */
x[j] = x[i] ; x[j+1] = x[i+1] ;
x[i] = rtemp ; x[i+1] = itemp ;
}
for( m = N>>1 ; m >= 2 && j >= m ; m >>= 1 )
j -= m ;
}
}