-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathSediment_170105.R
414 lines (316 loc) · 24.6 KB
/
Sediment_170105.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
setwd("/Users/macbook/Publications/17_Burkina_Vignette")#"C:/Users/dlanzanova/Documents/Model_Lagdwenda/20-Model-12012017-low-cost-invest-buffer") # D:/DECISIONS/TAI_model/170105/")
library(decisionSupport)
library(DAutilities)
sediment_calc<-function(x, varnames)
{
### 4 ex-post risks, impacts on the benefits ###
HazardEvent<-chance_event(NaturHazard,1,0,n=n_years)
BadMaintEvent<-chance_event(BadMaintenance,1,0,n=n_years)
BadDesignEvent<-chance_event(BadDesign,1,0,n=n_years, one_draw = TRUE)
Hazard_scaling_irrig_area<-1-HazardEvent*vv(Hazard_reduction_irrigated_area,var_CV,n=n_years)/100
BadMaint_scaling_irrig_area<-1-BadMaintEvent*vv(BadMaint_reduction_irrigated_area,var_CV,n=n_years)/100
BadDesign_scaling_irrig_area<-1-BadDesignEvent*vv(BadDesign_reduction_irrigated_area,var_CV,n=n_years)/100
### 3 ex-ante risks, impacts on the implementation of interventions ###
dredge_NonPopInvolvEvent<-chance_event(dredge_NonPopInvolv,1,0,n=1)
dredge_NonDonorsInvolvEvent<-chance_event(dredge_NonDonorsInvolv,1,0,n=1)
check_NonPopInvolvEvent<-chance_event(check_NonPopInvolv,1,0,n=1)
check_NonInstInvolvEvent<-chance_event(check_NonInstInvolv,1,0,n=1)
check_NonDonorsInvolvEvent<-chance_event(check_NonDonorsInvolv,1,0,n=1)
buffer_NonPopInvolvEvent<-chance_event(buffer_NonPopInvolv,1,0,n=1)
buffer_NonInstInvolvEvent<-chance_event(buffer_NonInstInvolv,1,0,n=1)
buffer_NonDonorsInvolvEvent<-chance_event(buffer_NonDonorsInvolv,1,0,n=1)
##calculation of common random draws for all intervention model runs
TLU<-vv(TLU_no_buffer,var_CV,n_years)
TLU_profit<-vv(profit_per_TLU,var_CV,n_years)
precalc_buffer_fruit_benefits<-vv(buffer_fruit_area_ha,var_CV,n_years)*
vv(buffer_fruit_yield_t_ha,var_CV,n_years)*
vv(buffer_fruit_profit_USD_t,var_CV,n_years)
precalc_buffer_vegetable_benefits<-vv(buffer_vegetable_area_ha,var_CV,n_years)*
vv(buffer_vegetable_yield_t_ha,var_CV,n_years)*
vv(buffer_vegetable_profit_USD_t,var_CV,n_years)
precalc_buffer_rainfed_crop_benefits<-vv(buffer_rainfed_crop_area_ha,var_CV,n_years)*
vv(buffer_rainfed_crop_yield_t_ha,var_CV,n_years)*
vv(buffer_rainfed_crop_profit_USD_t,var_CV,n_years)
precalc_scheme2_vegetable_yield_t_ha<-vv(scheme2_vegetable_yield_t_ha,var_CV,n_years)
precalc_scheme2_vegetable_profit_USD_t<-vv(scheme2_vegetable_profit_USD_t,var_CV,n_years)
precalc_scheme2_rice_yield_t_ha<-vv(scheme2_rice_yield_t_ha,var_CV,n_years)
precalc_scheme2_rice_profit_USD_t<-vv(scheme2_rice_profit_USD_t,var_CV,n_years)
precalc_irrigation_scheme_vegetable_yield_t_ha<-vv(irrigation_scheme_vegetable_yield_t_ha,var_CV,n_years)
precalc_irrigation_scheme_vegetable_profit_USD_t<-vv(irrigation_scheme_vegetable_profit_USD_t,var_CV,n_years)
precalc_irrigation_scheme_rice_yield_t_ha<-vv(irrigation_scheme_rice_yield_t_ha,var_CV,n_years)
precalc_irrigation_scheme_rice_profit_USD_t<-vv(irrigation_scheme_rice_profit_USD_t,var_CV,n_years)
precalc_proportion_irrigation_scheme_rice<-vv(proportion_irrigation_scheme_rice,var_CV,n_years)
precalc_fish_hazards<-HazardEvent*vv(Hazard_reduction_fish_perc/100,var_CV,n=n_years)
precalc_current_fish_value<-vv(current_annual_fish_value_USD,var_CV,n_years)
for (decision_dredging in c(FALSE,TRUE))
for (decision_check_dams in c(FALSE,TRUE))
for (decision_buffer_strips in c(FALSE,TRUE))
{
### Intervention 1: dredging ###
if(decision_dredging)
{dredging<-TRUE
dredging_PlanningCost<-TRUE
dredging_Cost<-TRUE} else
{dredging<-FALSE
dredging_PlanningCost<-FALSE
dredging_Cost<-FALSE}
if (dredge_NonPopInvolvEvent){ dredging<-FALSE ; dredging_Cost<-FALSE}
# Non institutional involvement is assumed to have no effect #
if (dredge_NonDonorsInvolvEvent){ dredging<-FALSE ; dredging_Cost<-FALSE ; dredging_PlanningCost<-FALSE}
### Intervention 2: check_dams ###
if(decision_check_dams)
{check_dams<-TRUE
check_dams_PlanningCost<-TRUE
check_dams_Cost<-TRUE} else
{check_dams<-FALSE
check_dams_PlanningCost<-FALSE
check_dams_Cost<-FALSE}
if (check_NonPopInvolvEvent){check_dams<-FALSE ; check_dams_Cost<-FALSE}
if (check_NonInstInvolvEvent){check_dams<-FALSE ; check_dams_Cost<-FALSE}
if (check_NonDonorsInvolvEvent){check_dams<-FALSE ; dredging_Cost<-FALSE ; check_dams_PlanningCost<-FALSE}
### Intervention 3: buffer_strips ###
if(decision_buffer_strips)
{buffer_strips<-TRUE
buffer_strips_PlanningCost<-TRUE
buffer_strips_Cost<-TRUE} else
{buffer_strips<-FALSE
buffer_strips_PlanningCost<-FALSE
buffer_strips_Cost<-FALSE}
if (buffer_NonPopInvolvEvent){buffer_strips<-FALSE ; buffer_strips_Cost<-FALSE}
if (buffer_NonInstInvolvEvent){buffer_strips<-FALSE ; buffer_strips_Cost<-FALSE}
if (buffer_NonDonorsInvolvEvent){buffer_strips<-FALSE ; buffer_strips_Cost<-FALSE ; buffer_strips_PlanningCost<-FALSE}
###Costs
if(dredging_Cost) {cost_dredging<-dredging_supervision_cost+dredging_admin_cost+dredging_transport_cost+
dredging_culvert_supervision_cost
} else cost_dredging<-0
if(check_dams_Cost) {cost_check_dams<-check_supervision_cost+check_training_cost+check_tech_devices_cost+check_material_cost+
check_rocks_cost+check_transport_cost
} else cost_check_dams<-0
if(buffer_strips_Cost) {cost_buffer_strips<-buffer_adaptation_cost+buffer_tech_devices_cost+buffer_nursery_cost+buffer_wells_cost+
buffer_training_cost+buffer_mngmt_oprt_cost+buffer_mngmt_follow_cost+buffer_mngmt_audit_cost
} else cost_buffer_strips<-0
if(dredging_PlanningCost) {plan_cost_dredging<-dredging_study_cost+dredging_communication_cost+dredging_culvert_feasibility_cost
} else plan_cost_dredging<-0
if(check_dams_PlanningCost) {plan_cost_check_dams<-check_location_cost+check_feasibility_cost+check_topobatymetry_cost+check_communication_cost
} else plan_cost_check_dams<-0
if(buffer_strips_PlanningCost) {plan_cost_buffer_strips<-buffer_communication_cost+buffer_zoning_cost
} else plan_cost_buffer_strips<-0
maintenance_cost<-rep(0,n_years)
if(check_dams) maintenance_cost<-maintenance_cost+vv(maintenance_check_dams,var_CV,n_years)
if(buffer_strips) maintenance_cost<-maintenance_cost+vv(maintenance_buffer_strips,var_CV,n_years)
intervention_cost<-maintenance_cost
intervention_cost[1]<-intervention_cost[1]+cost_dredging+cost_check_dams+cost_buffer_strips+
plan_cost_dredging+plan_cost_check_dams+plan_cost_buffer_strips
###irrigation scheme 1 - area decline and delay by interventions
gompertz_time1_time_until_irrigated_area_declines<-sum(c(baseline_time_until_irrig_area_declines,
dredging*dredging_delay_of_irrig_area_decline,
check_dams*check_dam_delay_of_irrig_area_decline,
buffer_strips*buffer_strip_delay_of_irrig_area_decline))
gompertz_time2_time_until_irrigated_area_halved<-sum(c(gompertz_time1_time_until_irrigated_area_declines,
baseline_start_losses_to_half_irrig_area_lost,
dredging*dredging_delay_of_irrig_area_halved,
check_dams*check_dam_delay_of_irrig_area_halved,
buffer_strips*buffer_strip_delay_of_irrig_area_halved))
irrig_scheme1_area_share<-1-gompertz_yield(max_harvest=1,
time_to_first_yield_estimate=gompertz_time1_time_until_irrigated_area_declines,
time_to_second_yield_estimate=gompertz_time2_time_until_irrigated_area_halved,
first_yield_estimate_percent=10,
second_yield_estimate_percent=50, n_years=n_years, var_CV = 0,
no_yield_before_first_estimate = TRUE)
irrig_scheme1_area_share<-irrig_scheme1_area_share[1:30]
irrig_scheme1_area<-current_irrig_area*irrig_scheme1_area_share
###irrigation scheme 1 - risk of blockage and pipe clearing
gompertz_time2_time_until_pipe_blockage_occurs_every_second_year<-sum(c(baseline_time_until_pipes_blocked_every_second_year,
dredging*dredging_delay_of_pipes_blocked_every_second_year,
check_dams*check_dam_delay_of_pipes_blocked_every_second_year,
buffer_strips*buffer_strip_delay_of_pipes_blocked_every_second_year))
risk_blockage<-gompertz_yield(max_harvest=1,
time_to_first_yield_estimate=0,
time_to_second_yield_estimate=gompertz_time2_time_until_pipe_blockage_occurs_every_second_year,
first_yield_estimate_percent=100*current_risk_of_pipe_blockage,
second_yield_estimate_percent=50,
n_years=n_years, var_CV = 0,
no_yield_before_first_estimate = TRUE)
risk_blockage[which(risk_blockage>1)]<-1
risk_blockage[which(risk_blockage<0)]<-0
gompertz_time2_time_until_chance_cleared_50percent<-sum(c(baseline_time_until_chance_cleared_50percent,
dredging*dredging_delay_of_time_until_chance_cleared_50percent,
check_dams*check_dam_delay_of_time_until_chance_cleared_50percent,
buffer_strips*buffer_strip_delay_of_time_until_chance_cleared_50percent))
chance_cleared<-gompertz_yield(max_harvest=1,
time_to_first_yield_estimate=0,
time_to_second_yield_estimate=gompertz_time2_time_until_chance_cleared_50percent,
first_yield_estimate_percent=100*current_chance_of_blocked_pipe_cleared,
second_yield_estimate_percent=50,
n_years=n_years, var_CV = 10,
no_yield_before_first_estimate = TRUE)
chance_cleared[which(chance_cleared>1)]<-1
chance_cleared[which(chance_cleared<0)]<-0
### Creation of intermediate variables: irrigation area potentially irrigated given the risk of pipe blockage (in agricultural development) ###
### Risk that pipes are blocked/cleared given the time period ###
### Irrigated area given the risk of pipe blockage (in agricultural development) ###
pipe_clogging<-sapply(1:n_years,function(x) rbinom(1,1,risk_blockage[x]))
pipe_cleared<-sapply(1:n_years,function(x) rbinom(1,1,chance_cleared[x]))
pipe_blocked <- pipe_clogging
for (i in 2:length(pipe_blocked))
if (pipe_clogging[i] == 0)
if (pipe_blocked[i - 1] == 1)
if (!pipe_cleared[i] == 1) pipe_blocked[i] <- 1
irrig_scheme1_irrigated_area_ex_ante<-irrig_scheme1_area*(1-pipe_blocked*vv(pipe_blocked_area_lost_perc/100,var_CV,n_years))
### Impact of ex-post risks on irrigated area###
irrigated_area_scheme1<-irrig_scheme1_irrigated_area_ex_ante*
Hazard_scaling_irrig_area*BadMaint_scaling_irrig_area*
BadDesign_scaling_irrig_area #*NonCompli_scaling_irrig_area
### Benefits from rice cultivation in the shore of the reservoir (==0 if buffer strips implemented) ###
if (buffer_strips)
buffer_strip_cultivation<-TRUE else buffer_strip_cultivation<-FALSE
scheme2_time_until_benefits_gone<-scheme2_time_until_dredging_benefits_gone_baseline+
check_dams*check_dams_added_scheme2_area_benefit_time
scheme2_area_scaler<-gompertz_yield(max_harvest=1,
time_to_first_yield_estimate=1,
time_to_second_yield_estimate=scheme2_time_until_benefits_gone,
first_yield_estimate_percent=100,
second_yield_estimate_percent=0,
n_years=n_years, var_CV = 0,
no_yield_before_first_estimate = TRUE)
scheme2_area_ha<-scheme2_area_no_dredging_ha*(1+
dredging*scheme2_area_scaler*dredging_bump_scheme2_area_perc/100)
#rice area remains unchanged (except dredging bump), because the
#water comes from very close to where it's needed in the rainy season.
scheme2_rice_benefits<-as.numeric(!buffer_strips)*
vv(scheme2_area_ha,var_CV,n_years)*
precalc_scheme2_rice_yield_t_ha*
precalc_scheme2_rice_profit_USD_t
gompertz_time1_time_until_irrigated_area2_declines<-sum(c(baseline_time_until_irrig_area2_declines,
dredging*dredging_delay_of_irrig_area2_decline,
check_dams*check_dam_delay_of_irrig_area2_decline))
gompertz_time2_time_until_irrigated_area2_halved<-sum(c(gompertz_time1_time_until_irrigated_area2_declines,
baseline_start_losses_to_half_irrig_area2_lost,
dredging*dredging_delay_of_irrig_area2_halved,
check_dams*check_dam_delay_of_irrig_area2_halved))
irrig_scheme2_area_share<-1-gompertz_yield(max_harvest=1,
time_to_first_yield_estimate=gompertz_time1_time_until_irrigated_area2_declines,
time_to_second_yield_estimate=gompertz_time2_time_until_irrigated_area2_halved,
first_yield_estimate_percent=0,
second_yield_estimate_percent=50, n_years=n_years, var_CV = 0,
no_yield_before_first_estimate = TRUE)
scheme2_vegetable_area_ha<-scheme2_area_ha*irrig_scheme2_area_share
scheme2_vegetable_benefits<-as.numeric(!buffer_strips)*
vv(scheme2_vegetable_area_ha,var_CV,n_years)*
precalc_scheme2_vegetable_yield_t_ha*
precalc_scheme2_vegetable_profit_USD_t
buffer_fruit_benefits<-as.numeric(buffer_strips)*precalc_buffer_fruit_benefits
buffer_vegetable_benefits<-as.numeric(buffer_strips)*precalc_buffer_vegetable_benefits
buffer_rainfed_crop_benefits<-as.numeric(buffer_strips)*precalc_buffer_rainfed_crop_benefits
rainy_season_rice_area_scheme1<-irrigated_area_scheme1*precalc_proportion_irrigation_scheme_rice
rainy_season_vegetable_area_scheme1<-irrigated_area_scheme1-rainy_season_rice_area_scheme1
irrigation_season_rainy_season_benefits_scheme1<-rainy_season_rice_area_scheme1*
precalc_irrigation_scheme_rice_yield_t_ha*
precalc_irrigation_scheme_rice_profit_USD_t+
rainy_season_vegetable_area_scheme1*
precalc_irrigation_scheme_vegetable_yield_t_ha*
precalc_irrigation_scheme_vegetable_profit_USD_t
irrigation_season_dry_season_benefits_scheme1<-irrigated_area_scheme1*
precalc_irrigation_scheme_vegetable_yield_t_ha*
precalc_irrigation_scheme_vegetable_profit_USD_t
### Total benefits from crop production (agricultural development and riparian zone) ###
crop_production<-scheme2_rice_benefits+
scheme2_vegetable_benefits+
buffer_fruit_benefits+
buffer_vegetable_benefits+
buffer_rainfed_crop_benefits+
irrigation_season_rainy_season_benefits_scheme1+
irrigation_season_dry_season_benefits_scheme1
### Benefits from fishing ###
### Impact of interventions on fish population ###
time_to_start_fish_decline<-sum(c(time_to_start_fish_decline_baseline,
dredging_delay_start_fish_decline,
check_dams_delay_start_fish_decline,
buffer_strips_delay_start_fish_decline))
time_to_fish_population_halved<-sum(c(time_to_start_fish_decline,
time_to_halve_fish_population_baseline,
dredging_delay_in_time_to_halve_fish_population,
check_dams_delay_in_time_to_halve_fish_population,
buffer_strips_delay_in_time_to_halve_fish_population))
fish_benefit_scaler<-1-gompertz_yield(max_harvest=1,
time_to_first_yield_estimate=time_to_start_fish_decline,
time_to_second_yield_estimate=time_to_fish_population_halved,
first_yield_estimate_percent=0,
second_yield_estimate_percent=50, n_years=n_years, var_CV = 10,
no_yield_before_first_estimate = TRUE)
risk_adjusted_fish_benefits<-fish_benefit_scaler*(1-precalc_fish_hazards)
### Fish benefits ###
Fish_benefits<-precalc_current_fish_value*risk_adjusted_fish_benefits
### Benefits from livestock ###
# The following allows considering that buffer strips may
# restrict access to the reservoir for livestock.
if(buffer_strips) TLU_intervention<-TLU*(1+change_TLU_buffer_perc/100) else TLU_intervention<-TLU
livestock_benefits<-TLU_intervention*TLU_profit
total_benefits<-crop_production+Fish_benefits+livestock_benefits
net_benefits<-total_benefits-intervention_cost
if(decision_dredging & decision_check_dams & decision_buffer_strips) result_dredge_check_buff<-net_benefits
if(decision_dredging & decision_check_dams & !decision_buffer_strips) result_dredge_check_nbuff<-net_benefits
if(decision_dredging & !decision_check_dams & decision_buffer_strips) result_dredge_ncheck_buff<-net_benefits
if(decision_dredging & !decision_check_dams & !decision_buffer_strips) result_dredge_ncheck_nbuff<-net_benefits
if(!decision_dredging & decision_check_dams & decision_buffer_strips) result_ndredge_check_buff<-net_benefits
if(!decision_dredging & decision_check_dams & !decision_buffer_strips) result_ndredge_check_nbuff<-net_benefits
if(!decision_dredging & !decision_check_dams & decision_buffer_strips) result_ndredge_ncheck_buff<-net_benefits
if(!decision_dredging & !decision_check_dams & !decision_buffer_strips) result_ndredge_ncheck_nbuff<-net_benefits
} #close intervention loop bracket
NPV_dredge_check_buff<-NPV(result_dredge_check_buff,discount_rate,calculate_NPV = TRUE)
NPV_dredge_check_nbuff<-NPV(result_dredge_check_nbuff,discount_rate,calculate_NPV = TRUE)
NPV_dredge_ncheck_buff<-NPV(result_dredge_ncheck_buff,discount_rate,calculate_NPV = TRUE)
NPV_dredge_ncheck_nbuff<-NPV(result_dredge_ncheck_nbuff,discount_rate,calculate_NPV = TRUE)
NPV_ndredge_check_buff<-NPV(result_ndredge_check_buff,discount_rate,calculate_NPV = TRUE)
NPV_ndredge_check_nbuff<-NPV(result_ndredge_check_nbuff,discount_rate,calculate_NPV = TRUE)
NPV_ndredge_ncheck_buff<-NPV(result_ndredge_ncheck_buff,discount_rate,calculate_NPV = TRUE)
NPV_ndredge_ncheck_nbuff<-NPV(result_ndredge_ncheck_nbuff,discount_rate,calculate_NPV = TRUE)
return(list(NPV_dredge_check_buff=NPV_dredge_check_buff-NPV_ndredge_ncheck_nbuff,
NPV_dredge_check_nbuff=NPV_dredge_check_nbuff-NPV_ndredge_ncheck_nbuff,
NPV_dredge_ncheck_buff=NPV_dredge_ncheck_buff-NPV_ndredge_ncheck_nbuff,
NPV_dredge_ncheck_nbuff=NPV_dredge_ncheck_nbuff-NPV_ndredge_ncheck_nbuff,
NPV_ndredge_check_buff=NPV_ndredge_check_buff-NPV_ndredge_ncheck_nbuff,
NPV_ndredge_check_nbuff=NPV_ndredge_check_nbuff-NPV_ndredge_ncheck_nbuff,
NPV_ndredge_ncheck_buff=NPV_ndredge_ncheck_buff-NPV_ndredge_ncheck_nbuff,
cashflow_NPV_dredge_check_buff=result_dredge_check_buff-result_ndredge_ncheck_nbuff,
cashflow_NPV_dredge_check_nbuff=result_dredge_check_nbuff-result_ndredge_ncheck_nbuff,
cashflow_NPV_dredge_ncheck_buff=result_dredge_ncheck_buff-result_ndredge_ncheck_nbuff,
cashflow_NPV_dredge_ncheck_nbuff=result_dredge_ncheck_nbuff-result_ndredge_ncheck_nbuff,
cashflow_NPV_ndredge_check_buff=result_ndredge_check_buff-result_ndredge_ncheck_nbuff,
cashflow_NPV_ndredge_check_nbuff=result_ndredge_check_nbuff-result_ndredge_ncheck_nbuff,
cashflow_NPV_ndredge_ncheck_buff=result_ndredge_ncheck_buff-result_ndredge_ncheck_nbuff))
}
###############################################################################################################
### Running of the model ###
decisionSupport("Sediment-2.csv",
outputPath='results',
welfareFunction=sediment_calc,
numberOfModelRuns=10000,
functionSyntax="plainNames")
mc<-read.csv("results/mcSimulationResults.csv")
legend_table<-read.csv("Sediment-2.csv")
mc_EVPI<-mc[,-grep("cashflow",colnames(mc))]
dir.create("Figures")
empirical_EVPI(mc_EVPI,"NPV_dredge_check_buff",write_table=TRUE,fileformat="png",outfolder="Figures",
p_spearman=0.05, legend_table=read.csv("Sediment_legend.csv"),#legend_table,
output_legend_table=read.csv("Sediment_legend.csv"))#legend_table)
#produce compound figures
#variable_name="implementer_NPV"
for (variable_name in c("NPV_dredge_check_buff","NPV_dredge_check_nbuff",
"NPV_dredge_ncheck_buff","NPV_dredge_ncheck_nbuff",
"NPV_ndredge_check_buff","NPV_ndredge_check_nbuff",
"NPV_ndredge_ncheck_buff"))
compound_figure(variable_name=variable_name,
MC_table=mc,
PLS_table=read.csv(paste("results/",variable_name,"_pls_results.csv",sep="")),
EVPI_table=read.csv(paste("Figures/","EVPI_table_",variable_name,".csv",sep="")),
cash_flow_vars=paste("cashflow_",variable_name,sep=""),
nbreaks=100,scaler="auto",percentile_remove=c(.01,.99),
npls=15,plsthreshold=0.8,colorscheme="ICRAF_colors",MCcolor="mango",fonttype='sans',
borderlines=FALSE,lwd=2,
fileformat="png",filename=paste("Figures/","Combined_",variable_name,sep=""),
legend_table=read.csv("Sediment_legend.csv"))
make_variables<-function(est,n=1)
{ x<-random(rho=est, n=n)
for(i in colnames(x)) assign(i, as.numeric(x[1,i]),envir=.GlobalEnv)}
make_variables(estimate_read_csv("Sediment-2.csv"))