-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
227 lines (192 loc) · 8.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import numpy as np
import torch
import torch.nn.functional as F
import torch.nn as nn
import os
import random
from torch.backends import cudnn
import math
from pyhessian import hessian
from torch.optim import Optimizer
from models_dict import densenet, resnet, cnn
import copy
from opacus.accountants.utils import get_noise_multiplier
##############################################################################
# Tools
##############################################################################
def init_model(num_id, model_type, args):
if args.dataset == 'OCT':
from classnames import OCT_Concepts
classnames = OCT_Concepts
elif args.dataset == 'Kvasir':
from classnames import Kvasir_Concepts
classnames = Kvasir_Concepts
else:
assert False
num_classes = args.num_classes
if model_type == 'CNN':
if args.dataset == 'cifar10':
model = cnn.CNNCifar10()
else:
model = cnn.CNNCifar100()
# resnet18 for imagenet
elif model_type == 'ResNet18':
model = resnet.ResNet18(num_classes)
elif model_type == 'ResNet20':
model = resnet.ResNet20(num_classes)
elif model_type == 'ResNet56':
model = resnet.ResNet56(num_classes)
elif model_type == 'ResNet110':
model = resnet.ResNet110(num_classes)
elif model_type == 'WRN56_2':
model = resnet.WRN56_2(num_classes)
elif model_type == 'WRN56_4':
model = resnet.WRN56_4(num_classes)
elif model_type == 'WRN56_8':
model = resnet.WRN56_8(num_classes)
elif model_type == 'DenseNet121':
model = densenet.DenseNet121(num_classes)
elif model_type == 'DenseNet169':
model = densenet.DenseNet169(num_classes)
elif model_type == 'DenseNet201':
model = densenet.DenseNet201(num_classes)
elif model_type == 'MLP':
model = cnn.MLP()
elif model_type == 'LeNet5':
model = cnn.LeNet5()
elif model_type == 'CLIP':
if args.method == 'DP-DyLoRA':
from models_dict.CLIP_DyLoRA import local_clip_model
else:
from models_dict.CLIP import local_clip_model
model, text_features = local_clip_model(args, num_id, args.lora_r, classnames)
return model, text_features
return model
def init_optimizer(num_id, model, args):
optimizer = []
if args.optimizer == 'sgd':
optimizer = torch.optim.SGD(params=filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, momentum=args.momentum, weight_decay=args.local_wd_rate)
elif args.optimizer == 'adam':
optimizer = torch.optim.Adam(params=filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, weight_decay=args.local_wd_rate)
return optimizer
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.deterministic = True
##############################################################################
# Training function
##############################################################################
def generate_matchlist(client_node, ratio = 0.5):
candidate_list = [i for i in range(len(client_node))]
select_num = int(ratio * len(client_node))
match_list = np.random.choice(candidate_list, select_num, replace = False).tolist()
return match_list
def lr_scheduler(rounds, node_list, args):
# learning rate scheduler for decaying
if rounds != 0:
args.lr *= 0.99 #0.99
for i in range(len(node_list)):
node_list[i].args.lr = args.lr
node_list[i].optimizer.param_groups[0]['lr'] = args.lr
print('Learning rate={:.4f}'.format(args.lr))
##############################################################################
# Validation function
##############################################################################
from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score, roc_auc_score
def compute_metrics(pre, gt): #D, H, W
#在测试集每类数量相同的情况下,多分类度量指标Accuracy=macro-Recall=micro-F1;
#在测试集每类数量不相同的情况下,多分类度量指标Accuracy= micro-F1。
pred = pre.cpu().numpy()
gt = gt.cpu().numpy()
acc=accuracy_score(gt, pred)
recall=recall_score(gt, pred, average='macro')
prec = precision_score(gt, pred, average='macro')
f1 = f1_score(gt, pred, average='macro')
return acc, recall, prec, f1
def compute_auc(pre_scores, gt, num_classes = 8):
pre_scores = pre_scores.cpu().numpy()
gt = gt.cpu().numpy()
gt_one_hot = np.eye(num_classes)[gt]
auc_score = roc_auc_score(gt_one_hot, pre_scores)
return auc_score
def validate(args, node, which_dataset = 'validate'):
'''
Generally, 'validate' refers to the local datasets of clients and 'local' refers to the server's testset.
'''
node.model.cuda().eval()
if which_dataset == 'validate':
test_loader = node.validate_set
elif which_dataset == 'local':
test_loader = node.local_data
elif which_dataset == 'test':
test_loader = node.test_set
else:
raise ValueError('Undefined...')
best_list = []
if args.method == 'DP-DyLoRA':
best_performce = -1
if args.lora_r == 2: new_ranks = [1, 2]
if args.lora_r == 4: new_ranks = [1, 2, 4]
if args.lora_r == 8: new_ranks = [1, 2, 4, 8]
if args.lora_r == 16: new_ranks = [1, 2, 4, 8, 16]
for new_rank in new_ranks:
node.model.set_rank(new_rank, frozen=False)
with torch.no_grad():
preds = []
targets = []
pred_scores = []
for idx, (data, target) in enumerate(test_loader):
data, target = data.cuda(), target.cuda()
image_features = node.model(data)
text_features = node.text_features
image_features = image_features / image_features.norm(dim=1, keepdim=True)
output = image_features @ text_features.T # B 512 C 512
pred = output.argmax(dim=1)
pred_scores.append(output.softmax(dim=1)) # B, C
preds.append(pred)
targets.append(target.view_as(pred))
pred_scores = torch.cat(pred_scores)
preds = torch.cat(preds)
targets = torch.cat(targets)
acc, recall, prec, f1 = compute_metrics(preds, targets)
auc = compute_auc(pred_scores, targets, num_classes=args.num_classes)
if best_performce < acc + recall + prec + f1 + auc:
best_performce = acc + recall + prec + f1 + auc
best_list = [acc, recall, prec, f1, auc]
else:
with torch.no_grad():
preds = []
targets = []
pred_scores = []
for idx, (data, target) in enumerate(test_loader):
data, target = data.cuda(), target.cuda()
image_features = node.model(data)
text_features = node.text_features
image_features = image_features / image_features.norm(dim=1, keepdim=True)
output = image_features @ text_features.T # B 512 C 512
pred = output.argmax(dim=1)
pred_scores.append(output.softmax(dim=1)) # B, C
preds.append(pred)
targets.append(target.view_as(pred))
pred_scores = torch.cat(pred_scores)
preds = torch.cat(preds)
targets = torch.cat(targets)
acc, recall, prec, f1 = compute_metrics(preds, targets)
auc = compute_auc(pred_scores, targets, num_classes=args.num_classes)
best_list = [acc, recall, prec, f1, auc]
return best_list[0]*100, best_list[1]*100, best_list[2]*100, best_list[3]*100, best_list[4]*100
def compute_noise_multiplier(args, target_epsilon, target_delta, global_epoch, local_epoch, batch_size, client_data_sizes):
total_dataset_size = sum(client_data_sizes)
sample_rate = batch_size / total_dataset_size
total_steps = sum([global_epoch * local_epoch * (client_data_size / batch_size) for client_data_size in client_data_sizes])
noise_multiplier = get_noise_multiplier(
target_epsilon=target_epsilon,
target_delta=target_delta,
sample_rate=sample_rate,
steps=total_steps,
accountant="rdp"
)
return noise_multiplier