This repository has been archived by the owner on Nov 12, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 271
/
Copy pathpreprocess.py
executable file
·245 lines (214 loc) · 7.38 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#!/usr/bin/env python36
# -*- coding: utf-8 -*-
"""
Created on July, 2018
@author: Tangrizzly
"""
import argparse
import time
import csv
import pickle
import operator
import datetime
import os
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='sample', help='dataset name: diginetica/yoochoose/sample')
opt = parser.parse_args()
print(opt)
dataset = 'sample_train-item-views.csv'
if opt.dataset == 'diginetica':
dataset = 'train-item-views.csv'
elif opt.dataset =='yoochoose':
dataset = 'yoochoose-clicks.dat'
print("-- Starting @ %ss" % datetime.datetime.now())
with open(dataset, "r") as f:
if opt.dataset == 'yoochoose':
reader = csv.DictReader(f, delimiter=',')
else:
reader = csv.DictReader(f, delimiter=';')
sess_clicks = {}
sess_date = {}
ctr = 0
curid = -1
curdate = None
for data in reader:
sessid = data['session_id']
if curdate and not curid == sessid:
date = ''
if opt.dataset == 'yoochoose':
date = time.mktime(time.strptime(curdate[:19], '%Y-%m-%dT%H:%M:%S'))
else:
date = time.mktime(time.strptime(curdate, '%Y-%m-%d'))
sess_date[curid] = date
curid = sessid
if opt.dataset == 'yoochoose':
item = data['item_id']
else:
item = data['item_id'], int(data['timeframe'])
curdate = ''
if opt.dataset == 'yoochoose':
curdate = data['timestamp']
else:
curdate = data['eventdate']
if sessid in sess_clicks:
sess_clicks[sessid] += [item]
else:
sess_clicks[sessid] = [item]
ctr += 1
date = ''
if opt.dataset == 'yoochoose':
date = time.mktime(time.strptime(curdate[:19], '%Y-%m-%dT%H:%M:%S'))
else:
date = time.mktime(time.strptime(curdate, '%Y-%m-%d'))
for i in list(sess_clicks):
sorted_clicks = sorted(sess_clicks[i], key=operator.itemgetter(1))
sess_clicks[i] = [c[0] for c in sorted_clicks]
sess_date[curid] = date
print("-- Reading data @ %ss" % datetime.datetime.now())
# Filter out length 1 sessions
for s in list(sess_clicks):
if len(sess_clicks[s]) == 1:
del sess_clicks[s]
del sess_date[s]
# Count number of times each item appears
iid_counts = {}
for s in sess_clicks:
seq = sess_clicks[s]
for iid in seq:
if iid in iid_counts:
iid_counts[iid] += 1
else:
iid_counts[iid] = 1
sorted_counts = sorted(iid_counts.items(), key=operator.itemgetter(1))
length = len(sess_clicks)
for s in list(sess_clicks):
curseq = sess_clicks[s]
filseq = list(filter(lambda i: iid_counts[i] >= 5, curseq))
if len(filseq) < 2:
del sess_clicks[s]
del sess_date[s]
else:
sess_clicks[s] = filseq
# Split out test set based on dates
dates = list(sess_date.items())
maxdate = dates[0][1]
for _, date in dates:
if maxdate < date:
maxdate = date
# 7 days for test
splitdate = 0
if opt.dataset == 'yoochoose':
splitdate = maxdate - 86400 * 1 # the number of seconds for a day:86400
else:
splitdate = maxdate - 86400 * 7
print('Splitting date', splitdate) # Yoochoose: ('Split date', 1411930799.0)
tra_sess = filter(lambda x: x[1] < splitdate, dates)
tes_sess = filter(lambda x: x[1] > splitdate, dates)
# Sort sessions by date
tra_sess = sorted(tra_sess, key=operator.itemgetter(1)) # [(session_id, timestamp), (), ]
tes_sess = sorted(tes_sess, key=operator.itemgetter(1)) # [(session_id, timestamp), (), ]
print(len(tra_sess)) # 186670 # 7966257
print(len(tes_sess)) # 15979 # 15324
print(tra_sess[:3])
print(tes_sess[:3])
print("-- Splitting train set and test set @ %ss" % datetime.datetime.now())
# Choosing item count >=5 gives approximately the same number of items as reported in paper
item_dict = {}
# Convert training sessions to sequences and renumber items to start from 1
def obtian_tra():
train_ids = []
train_seqs = []
train_dates = []
item_ctr = 1
for s, date in tra_sess:
seq = sess_clicks[s]
outseq = []
for i in seq:
if i in item_dict:
outseq += [item_dict[i]]
else:
outseq += [item_ctr]
item_dict[i] = item_ctr
item_ctr += 1
if len(outseq) < 2: # Doesn't occur
continue
train_ids += [s]
train_dates += [date]
train_seqs += [outseq]
print(item_ctr) # 43098, 37484
return train_ids, train_dates, train_seqs
# Convert test sessions to sequences, ignoring items that do not appear in training set
def obtian_tes():
test_ids = []
test_seqs = []
test_dates = []
for s, date in tes_sess:
seq = sess_clicks[s]
outseq = []
for i in seq:
if i in item_dict:
outseq += [item_dict[i]]
if len(outseq) < 2:
continue
test_ids += [s]
test_dates += [date]
test_seqs += [outseq]
return test_ids, test_dates, test_seqs
tra_ids, tra_dates, tra_seqs = obtian_tra()
tes_ids, tes_dates, tes_seqs = obtian_tes()
def process_seqs(iseqs, idates):
out_seqs = []
out_dates = []
labs = []
ids = []
for id, seq, date in zip(range(len(iseqs)), iseqs, idates):
for i in range(1, len(seq)):
tar = seq[-i]
labs += [tar]
out_seqs += [seq[:-i]]
out_dates += [date]
ids += [id]
return out_seqs, out_dates, labs, ids
tr_seqs, tr_dates, tr_labs, tr_ids = process_seqs(tra_seqs, tra_dates)
te_seqs, te_dates, te_labs, te_ids = process_seqs(tes_seqs, tes_dates)
tra = (tr_seqs, tr_labs)
tes = (te_seqs, te_labs)
print(len(tr_seqs))
print(len(te_seqs))
print(tr_seqs[:3], tr_dates[:3], tr_labs[:3])
print(te_seqs[:3], te_dates[:3], te_labs[:3])
all = 0
for seq in tra_seqs:
all += len(seq)
for seq in tes_seqs:
all += len(seq)
print('avg length: ', all/(len(tra_seqs) + len(tes_seqs) * 1.0))
if opt.dataset == 'diginetica':
if not os.path.exists('diginetica'):
os.makedirs('diginetica')
pickle.dump(tra, open('diginetica/train.txt', 'wb'))
pickle.dump(tes, open('diginetica/test.txt', 'wb'))
pickle.dump(tra_seqs, open('diginetica/all_train_seq.txt', 'wb'))
elif opt.dataset == 'yoochoose':
if not os.path.exists('yoochoose1_4'):
os.makedirs('yoochoose1_4')
if not os.path.exists('yoochoose1_64'):
os.makedirs('yoochoose1_64')
pickle.dump(tes, open('yoochoose1_4/test.txt', 'wb'))
pickle.dump(tes, open('yoochoose1_64/test.txt', 'wb'))
split4, split64 = int(len(tr_seqs) / 4), int(len(tr_seqs) / 64)
print(len(tr_seqs[-split4:]))
print(len(tr_seqs[-split64:]))
tra4, tra64 = (tr_seqs[-split4:], tr_labs[-split4:]), (tr_seqs[-split64:], tr_labs[-split64:])
seq4, seq64 = tra_seqs[tr_ids[-split4]:], tra_seqs[tr_ids[-split64]:]
pickle.dump(tra4, open('yoochoose1_4/train.txt', 'wb'))
pickle.dump(seq4, open('yoochoose1_4/all_train_seq.txt', 'wb'))
pickle.dump(tra64, open('yoochoose1_64/train.txt', 'wb'))
pickle.dump(seq64, open('yoochoose1_64/all_train_seq.txt', 'wb'))
else:
if not os.path.exists('sample'):
os.makedirs('sample')
pickle.dump(tra, open('sample/train.txt', 'wb'))
pickle.dump(tes, open('sample/test.txt', 'wb'))
pickle.dump(tra_seqs, open('sample/all_train_seq.txt', 'wb'))
print('Done.')