-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathboxplots.py
executable file
·64 lines (57 loc) · 1.95 KB
/
boxplots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import sys
import glob
import os
import re
lenind = 200
inpath = sys.argv[1]
metric = sys.argv[2]
show = (sys.argv[3] == '1')
if len(sys.argv) > 4:
alls = (sys.argv[4] == '1')
if alls:
lenind = 1800
metrics = { "pan": "var5", "apan": "var7", "ap": "var9", "aap": "var11", "mf1": "var13", "amf1": "var15", "roc": "var17", "ttr": "var19", "tts": "var21" }
algs = { "swlof": "LOF", "swknn": "kNN", "xstream": "xS", "sdo": "SDO", "sdostream": "SDOs", "rrc": "RRCT", "rshash": "RSH", "loda": "LODA"}
dfval = pd.DataFrame()
for filename in glob.glob(os.path.join(inpath, '*.txt')):
raw_data = pd.read_csv(filename, header = None, prefix="var", sep = ' ')
alg_name = algs[re.sub(inpath, '', filename).lstrip('/SUMMARY_').rstrip('_T500.txt')]
clmn = list(raw_data)
for i in clmn:
raw_data[i] = raw_data[i].map(lambda x: x.rstrip(',\"'))
aux = raw_data[metrics[metric]]
aux = [float(x) for x in aux if str(x) != 'nan']
aux = [float(x) for x in aux if str(x) != 'inf']
if (alg_name == "LOF" or alg_name == "kNN"):
aux = np.repeat(aux, repeats=10)
print(filename, alg_name)
dfval[alg_name] = pd.Series(aux, index=np.arange(0,lenind)).astype(float)
plt.figure(1, figsize=(6, 3), dpi=100)
plt.rc('xtick', labelsize=14)
#plt.xticks(rotation=-45)
box_plot_data=dfval.to_numpy()
plt.boxplot(box_plot_data,patch_artist=True,labels=list(dfval.columns.values), showfliers=False)
axes = plt.gca()
mmax=1.1*np.max(box_plot_data)
if metric=='tts':
mmax=80
axes.set_ylim([-0.1,mmax])
chall = inpath.split('/')
if chall == 'm-out':
chall = 'med-out'
elif chall == 'h-out':
chall = 'many-out'
elif chall == 'synall':
chall = 'All synthetic'
mtit = metric
if mtit == 'tts':
mtit = 'eval. time (seconds)'
plt.title(chall[-1])
plt.ylabel(metric, fontsize=14)
plt.tight_layout()
plt.savefig(chall[-1]+'_'+metric+'_BP.pdf')
if show:
plt.show()