-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathComplex.py
293 lines (219 loc) · 16.2 KB
/
Complex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import numpy as np
import maths, colors
import copy
# This module contains all information about Complex and path
class Complex(object):
def __init__(self):
pass
def ideogram_tick_label_accum_coord_list(self, ideogram_coord_config):
return ideogram_coord_config['tick_label_accum_coord_list']
def ideogram_theta_list(self, ideogram_coord_config, SUM, degreerange=[0,360]):
# 2X
return maths.to_theta(ideogram_coord_config['ideogram_accum_coord_list'], SUM, degreerange=degreerange)
def ideogram_tick_theta_list(self, ideogram_coord_config, tick_accum_coord_list, SUM, degreerange=[0,360]):
return maths.to_theta(tick_accum_coord_list, SUM, degreerange=degreerange)
def ideogram_tick_label_theta_list(self, ideogram_coord_config, SUM, degreerange=[0,360]):
return maths.to_theta(ideogram_coord_config['tick_label_accum_coord_list'], SUM, degreerange=degreerange)
def ideogram_chrannot_theta(self, ideogram_coord_config, SUM, degreerange=[0,360]):
return [*map(lambda x: np.mean(x), self.ideogram_theta_list(ideogram_coord_config, SUM, degreerange=degreerange))]
def ideogram_chrannot_complex(self, SUM, degreerange=[0,360], chr_annotation_radius_dict={'R': 1.2}):
return maths.to_complex(self.ideogram_chrannot_theta(SUM, degreerange), chr_annotation_radius_dict['R'])
def tick_complex(self, tick_theta, tick_radius_dict={'R0': 1.1, 'R1': 1.12}):
# used by both the major and minor tick
return maths.to_complex(tick_theta, np.array([[tick_radius_dict['R0'], tick_radius_dict['R1']]]))
def tick_label_complex(self, tick_label_theta, tick_label_radius_dict={'R': 1.15}):
return maths.to_complex(tick_label_theta, tick_label_radius_dict['R'])
def ideogram_complex(self, ideogram_coord_config, SUM, degreerange=[0,360], ideogram_radius_dict={'R0': 1, "R1": 1.1}):
## this will also be used for ring background!!!
ideogram_theta_list = self.ideogram_theta_list(ideogram_coord_config, SUM, degreerange)
radius_list = [*map(lambda x: np.concatenate((np.ones(len(x)//2)*ideogram_radius_dict['R0'],
np.ones(len(x)//2)*ideogram_radius_dict['R1'])), ideogram_theta_list
)]
ideogram_complex_list = [*map(lambda x, y: maths.to_complex(x, y), ideogram_theta_list, radius_list)]
#ideogram_complex_list_0 = maths.to_complex(self.ideogram_theta_list(SUM, degreerange), ideogram_radius_dict['R0'])
#ideogram_complex_list_1 = maths.to_complex([*map(lambda x: x[::-1], self.ideogram_theta_list(SUM, degreerange))], ideogram_radius_dict['R1'])
#ideogram_complex_list = [*map(lambda x, y: np.concatenate((x, y)), ideogram_complex_list_0, ideogram_complex_list_1)]
return ideogram_complex_list
def ideogram_path(self, ideogram_complex):
# works for both ring and ideogram!
ideogram_path_array_list = [*map(lambda x: np.column_stack((np.concatenate((np.full(1, 'M'), np.full(len(x)-1, 'L'))), x.real, x.imag)).ravel(), ideogram_complex)]
ideogram_path_string_list = [*map(lambda x: " ".join(x) + ' Z', ideogram_path_array_list)]
return ideogram_path_string_list
def tick_path(self, tick_complex):
path_array_list = [*map(lambda x: np.column_stack((np.tile(['M', 'L'], len(x)//2), x.real, x.imag)).ravel(), tick_complex)]
path_string_list = [*map(lambda x: " ".join(x), path_array_list)]
path_string = " ".join(path_string_list)
return path_string
def data_complex(self,
ideogram_coord_config,
data_array,
category,
radius_dict,
SUM,
custom_offset_degree=False,
degreerange=[0,360],
return_path=True
):
# return_path=False: Traces for area plot, we don't add the return arc which would have ruined the hovertext arrangement
# return_path=True: Layout for area plot, we need the return arc to close the area so that fill color can be applied
if category == 'annotation':
constant = np.pi/180
data_theta = maths.to_theta(data_array[:,1], SUM, degreerange=degreerange)
if custom_offset_degree:
data_theta += data_array[:,3]*constant
Data_complex = maths.to_complex(data_theta, radius_dict['R'])
return Data_complex
elif category in ['histogram', 'heatmap', 'cytoband']:
# chr_name start end val
assert self.ideogram_theta_list(ideogram_coord_config, SUM, degreerange=degreerange)
data_theta_interval = maths.to_theta(data_array[:,1:3], SUM, degreerange=degreerange)
data_complex_0 = maths.to_arc(data_theta_interval, radius_dict['R0'], self.ideogram_theta_list(ideogram_coord_config, SUM, degreerange=degreerange))
if category == 'histogram':
# when radius is dependent upon data_val
data_radius = maths.val2radius(data_array[:,3], radius_dict['R0'], radius_dict['R1'])
data_complex_1 = [*map(lambda x: x[::-1], maths.to_arc(data_theta_interval, data_radius, self.ideogram_theta_list(ideogram_coord_config, SUM, degreerange=degreerange)))]
else:
data_complex_1 = [*map(lambda x: x[::-1], maths.to_arc(data_theta_interval, radius_dict['R1'], self.ideogram_theta_list(ideogram_coord_config, SUM, degreerange=degreerange)))]
Data_complex = [*map(lambda x, y: np.concatenate((x,y)), data_complex_0, data_complex_1)]
return Data_complex
elif category == 'scatter':
data_radius = maths.val2radius(data_array[:,2], radius_dict['R0'], radius_dict['R1'])
data_theta = maths.to_theta(data_array[:,1], SUM, degreerange=degreerange)
Data_complex = maths.to_complex(data_theta, data_radius)
return Data_complex
elif category in ['line', 'area']:
# chr_name pos val
# get the unique chromosome index
data_chr = data_array[:,0]
_, indices = np.unique(data_chr, return_index=True)
indices = np.sort(indices)
data_radius = maths.val2radius(data_array[:,2], radius_dict['R0'], radius_dict['R1'])
data_theta = maths.to_theta(data_array[:,1], SUM, degreerange=degreerange)
data_complex_array = maths.to_complex(data_theta, data_radius)
# splitting complex_array to a list by chromosome:
Data_complex = np.split(data_complex_array, indices[1:])
if category == 'area' and return_path is True:
data_theta_list = np.split(data_theta, indices[1:])
# theta interval should be the first and last theta value of each chromosome
data_theta_interval = np.column_stack((np.array([*map(lambda x: x[0], data_theta_list)]), np.array([*map(lambda x: x[-1], data_theta_list)])))
# the return arc_complex, needs to be reversed
data_arc_complex = [*map(lambda x: x[::-1], maths.to_arc(data_theta_interval, radius_dict['R0'], self.ideogram_theta_list(ideogram_coord_config, SUM, degreerange)))]
Data_complex = [*map(lambda x, y: np.concatenate((x,y)), Data_complex, data_arc_complex)]
return Data_complex
elif category == 'highlight':
### R0, R1 is defined from the file
# chr_name start end R0 R1 opacity
interval_theta_array = maths.to_theta(data_array[:,1:3], SUM, degreerange=degreerange)
arc_complex_list_0 = maths.to_arc(interval_theta_array, radius_dict['R0'], self.ideogram_theta_list(ideogram_coord_config, SUM, degreerange=degreerange))
arc_complex_list_1 = [*map(lambda x: x[::-1, ], maths.to_arc(interval_theta_array, radius_dict['R1'], self.ideogram_theta_list(ideogram_coord_config, SUM, degreerange)))]
Data_complex = [*map(lambda x, y: np.concatenate((x,y)), arc_complex_list_0, arc_complex_list_1)]
return Data_complex
elif category == 'tile':
# chr_name start end data_val
interval_theta_array = maths.to_theta(data_array[:,1:3], SUM, degreerange=degreerange)
data_radius = maths.val2radius(data_array[:,3], radius_dict['R0'], radius_dict['R1'])
Data_complex = maths.to_arc(interval_theta_array, data_radius, self.ideogram_theta_list(ideogram_coord_config, SUM, degreerange=degreerange))
return Data_complex
elif category == 'connector':
# chr_name pos0 pos1
ratio_constant = radius_dict['ratio'][2]/radius_dict['ratio'][0]
data_theta = maths.to_theta(data_array[:,1:3], SUM, degreerange=degreerange)
a0 = maths.to_complex(data_theta[:,0], radius_dict['R0'])
a1 = maths.to_complex(data_theta[:,0], radius_dict['R0'] + (radius_dict['R1'] - radius_dict['R0'])*radius_dict['ratio'][0])
a3 = maths.to_complex(data_theta[:,1], radius_dict['R1'])
a2 = a3 + (a0-a1)*ratio_constant
Data_complex = np.column_stack((a0, a1, a2, a3))
return Data_complex
elif category in ['link', 'ribbon', 'twistedribbon']:
# R0 is bezier radius, R1 is ends radius
# chr0 start0 end0 chr1 start1 end1
assert radius_dict['R0'] is not None
assert radius_dict['R1'] >= radius_dict['R0']
data_coord_array = np.column_stack((data_array[:,1:3], data_array[:,4:6]))
Data_complex = maths.bezier_complex(data_coord_array, radius_dict['R1'], radius_dict['R0'], SUM, type=category, degreerange=degreerange)
return Data_complex
def data_path(self,
ideogram_coord_config,
category,
data_complex,
SUM,
degreerange=[0,360],
radius_dict={},
interval_theta_array_0=None,
interval_theta_array_1=None
):
length = len(data_complex)
if category in ['histogram', 'heatmap', 'cytoband', 'tile', 'highlight', 'area', 'ring']:
# data_complex is a ndarray list
path_array_list = [*map(lambda x: np.column_stack((np.concatenate((np.full(1, 'M'), np.full(len(x)-1, 'L'))), x.real, x.imag)).ravel(), data_complex)]
if category in ['line', 'tile']:
# these paths dont form a loop shape,
path_string_list = [*map(lambda x: " ".join(x), path_array_list)]
else:
path_string_list = [*map(lambda x: " ".join(x) + ' Z', path_array_list)]
return path_string_list
elif category == 'connector':
## data_complex is a ndarray
# in case where connector has customcolor, we need the path_string_list, otherwise we can just join
path_array = np.column_stack((np.full(length, 'M'), data_complex[:,0].real, data_complex[:,0].imag,
np.full(length, 'L'), data_complex[:,1].real, data_complex[:,1].imag,
np.full(length, 'L'), data_complex[:,2].real, data_complex[:,2].imag,
np.full(length, 'L'), data_complex[:,3].real, data_complex[:,3].imag
))
path_string_list = [*map(lambda x: " ".join(x), path_array)]
return path_string_list
elif category == 'link':
if data_complex.ndim == 1:
data_complex = data_complex.reshape((len(data_complex)//6, 6))
length = len(data_complex)
path_array = np.column_stack((np.full(length, 'M'), data_complex[:,0].real, data_complex[:,0].imag,
np.full(length, 'Q'), data_complex[:,2].real, data_complex[:,2].imag,
np.full(length, ''), data_complex[:,4].real, data_complex[:,4].imag,
np.full(length, 'M'), data_complex[:,1].real, data_complex[:,1].imag,
np.full(length, 'Q'), data_complex[:,3].real, data_complex[:,3].imag,
np.full(length, ''), data_complex[:,5].real, data_complex[:,5].imag
))
path_string_list = [*map(lambda x: " ".join(x), path_array)]
# keep output pathstring as list in case we need custom color
return path_string_list
elif category in ['ribbon', 'twistedribbon']:
## Need to append two arcs, this is kinda complicated and I couldn't think of an easier way to do this
if data_complex.ndim == 1:
data_complex = data_complex.reshape((len(data_complex)//6, 6))
length = len(data_complex)
assert radius_dict['R1'] is not None
assert interval_theta_array_0 is not None
assert interval_theta_array_1 is not None
arc0_complex_list = maths.to_arc(interval_theta_array_0, radius_dict['R1'], self.ideogram_theta_list(ideogram_coord_config, SUM, degreerange=degreerange))
arc1_complex_list = maths.to_arc(interval_theta_array_1, radius_dict['R1'], self.ideogram_theta_list(ideogram_coord_config, SUM, degreerange=degreerange))
if category == 'ribbon':
link0_path_array = np.column_stack((np.full(length, 'M'), data_complex[:,5].real, data_complex[:,5].imag,
np.full(length, 'Q'), data_complex[:,2].real, data_complex[:,2].imag,
np.full(length, ''), data_complex[:,0].real, data_complex[:,0].imag
))
link1_path_array = np.column_stack((np.full(length, 'M'), data_complex[:,1].real, data_complex[:,1].imag,
np.full(length, 'Q'), data_complex[:,3].real, data_complex[:,3].imag,
np.full(length, ''), data_complex[:,4].real, data_complex[:,4].imag
))
else:
## reverse arc1 for twistedribbon!
arc1_complex_list = [*map(lambda x: x[::-1], arc1_complex_list)]
link0_path_array = np.column_stack((np.full(length, 'M'), data_complex[:,4].real, data_complex[:,4].imag,
np.full(length, 'Q'), data_complex[:,2].real, data_complex[:,2].imag,
np.full(length, ''), data_complex[:,0].real, data_complex[:,0].imag
))
link1_path_array = np.column_stack((np.full(length, 'M'), data_complex[:,1].real,data_complex[:,1].imag,
np.full(length, 'Q'), data_complex[:,3].real, data_complex[:,3].imag,
np.full(length, ''), data_complex[:,5].real, data_complex[:,5].imag
))
# because arc are always in the middle of the PATH, so only use L
arc0_path_array_list = [*map(lambda x: np.column_stack((np.full(len(x), 'L'), x.real, x.imag)).ravel(), arc0_complex_list)]
arc1_path_array_list = [*map(lambda x: np.column_stack((np.full(len(x), 'L'), x.real, x.imag)).ravel(), arc1_complex_list)]
arc0_path_string_list = [*map(lambda x: " ".join(x), arc0_path_array_list)]
arc1_path_string_list = [*map(lambda x: " ".join(x), arc1_path_array_list)]
link0_path_string_list = [*map(lambda x: " ".join(x), link0_path_array)]
link1_path_string_list = [*map(lambda x: " ".join(x), link1_path_array)]
path_string_list = [*map(lambda a, b, c, d: " ".join([a, b, c, d]), link0_path_string_list, arc0_path_string_list, link1_path_string_list, arc1_path_string_list)]
return path_string_list
else:
raise ValueError('Please select a supported category for path, scatter, line and annotation does not need path')