-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path04-articles.Rmd
273 lines (225 loc) · 42.4 KB
/
04-articles.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# Example Articles
## Cross-sectional: clustered or hierarchical
### Observed, cross-classified Clusters
```{block type='rmdlink', echo=TRUE}
**Disentangling the Relative Influence of Schools and Neighborhoods on Adolescents’ Risk for Depressive Symptoms**
- [Public link](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358201/)
- [USU-full text](https://ajph.aphapublications.org/doi/full/10.2105/AJPH.2014.302374)
```
Dunn, E. C., Milliren, C. E., Evans, C. R., Subramanian, S. V., & Richmond, T. K. (2015). Disentangling the relative influence of schools and neighborhoods on adolescents’ risk for depressive symptoms. American journal of public health, 105(4), 732-740.
> "Our data came from wave 1 of the National Longitudinal Study of Adolescent Health (Add Health), one of the few nationally representative longitudinal surveys of US adolescents that examines health and health-related behaviors and includes information about both school and neighborhood environments."
+----------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------+
| Concept | Article Details |
+:===============+:==========================================================================================================================================================+
| **Terms** | cross-classified multilevel modeling (CCMM) |
+----------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------+
| **Samples** | - Level 2a: schools (*n* = 128) |
| | - Level 2b: neighborhoos (*n* = 2,118) |
| | - Level 1: students (*n* = 16,172) |+----------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------+
| **Missing** | excluded: not nationally representative and schools that did not provide demographic data had been eliminated (n = 660) |
| | adolescents who were missing data on the outcome measure (n = 38) or predictors and covariates (n = 1404) |
| | We restricted our analysis to adolescents who were White, Black, or Hispanic (others too sparce) |
+----------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------+
| **Centering** | none noted |
+----------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------+
| **Components** | descriptives, MLM, ICC |
+----------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------+
| **Results** | plots of cluster means (by school and by neighborhood), table of parameter estimates |
+----------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------+
| **Software** | **MLwiN version 2.26** with Bayesian estimation procedures, implemented via Markov chain Monte Carlo methodology |
+----------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------+
* disentangle the effects of schools and neighborhoods on adolescents’ risk for depression
* schools appeared to drive the between-level variance in depressive symptoms more than neighborhoods
* After individual-level (or compositional) characteristics had been taken into account, the school-level random effect was statistically significant and more than 3 times the neighborhood-level random effect
* we found that only student-level factors (i.e., gender, race/ethnicity, age, parental SES) were significantly associated with depressive symptoms
### Non-randomized Intervention
```{block type='rmdlink', echo=TRUE}
**Efficacy Study of Zearn Math in a Large Urban School District**
- [Public link](https://jscholarship.library.jhu.edu/handle/1774.2/62395)
- [USU-full text](https://jscholarship.library.jhu.edu/bitstream/handle/1774.2/62395/Zearn%20Math%20Final%20Report.pdf?sequence=1&isAllowed=y)
```
> Note: The schools chose where to implement the 'treatment' (n = 15) or not (n = 20).
+----------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------+
| Concept | Article Details |
+:===============+:==========================================================================================================================================================+
| **Terms** | hierarchical linear modeling (HLM) |
+----------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------+
| **Samples** | - Level 2: schools (*n* = 35) |
| | |
| | - Level 1: students (*n* = 8718) |
+----------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------+
| **Missing** | none noted |
+----------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------+
| **Centering** | none noted |
+----------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------+
| **Components** | descriptives, HLM, followup subgroup analysis (seems link only random intercepts) |
+----------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------+
| **Results** | No plots, only tables presenting the main effect (treatment) and excluding covariates and variance components, effect sizes looks like the are Cohen's d? |
+----------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------+
| **Software** | **Stata** |
+----------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------+
### Dyadic Design
```{block type='rmdlink', echo=TRUE}
**Parent couples' participation in speech-language therapy for school-age children with autism spectrum disorder in the United States**
- [Public link](https://journals.sagepub.com/doi/10.1177/1362361319862113)
- [USU-full text link](https://journals.sagepub.com/doi/pdf/10.1177/1362361319862113?casa_token=0diefubgXBUAAAAA:Fr_CdGdeSdzpo-aCr-zOrSxf59tRZa61TfiFspkjanu6ZsqHammZfVr3UPsgUvx-oe9qA3R5wKAK)
```
+----------------+---------------------------------------------------------------------------------------------------------------------------------+
| Concept | Article Details |
+:===============+:================================================================================================================================+
| **Terms** | ICC, multilevel models |
+----------------+---------------------------------------------------------------------------------------------------------------------------------+
| **Samples** | - Level 2: child (*n* = 40) |
| | |
| | - Level 1: parent, mother and father (*n* = 80) |
+----------------+---------------------------------------------------------------------------------------------------------------------------------+
| **Missing** | Only a small proportion of missing data, so composite variables were imputed using the expectation--maximization (EM) algorithm |
+----------------+---------------------------------------------------------------------------------------------------------------------------------+
| **Centering** | - Binary variables were entered **uncentered** |
| | |
| | - Continuous variables were **grand mean centered** |
+----------------+---------------------------------------------------------------------------------------------------------------------------------+
| **Components** | Null for ICC, Random intercepts (no random slopes), residual diagnostics |
+----------------+---------------------------------------------------------------------------------------------------------------------------------+
| **Results** | Table with 3 MLM models, discussed moderation |
+----------------+---------------------------------------------------------------------------------------------------------------------------------+
| **Software** | **HLM** (Version 7.01) using restricted maximum likelihood |
+----------------+---------------------------------------------------------------------------------------------------------------------------------+
![![]()](https://journals.sagepub.com/na101/home/literatum/publisher/sage/journals/content/auta/2020/auta_24_2/1362361319862113/20200123/images/medium/10.1177_1362361319862113-table6.gif){width="550"}
### Binary Outcome
```{block type='rmdlink', echo=TRUE}
**County-level social factors and schizophrenia: A multilevel study of 1.9 million Chinese adults**
- [Public link with PDF download](https://www.sciencedirect.com/science/article/pii/S0165178118305316?casa_token=IYd4CsFB7BkAAAAA:w6YBNcdqeqCrLbXiMyC-ut-IbhXud8JwJNWnDS_gHYTpl7UUa13b54R0DY0CbyAO-4cwNXZXgQ)
```
+----------------+------------------------------------------------------------------------------------------------------------------------------------------+
| Concept | Article Details |
+:===============+:=========================================================================================================================================+
| **Terms** | multilevel logistic regression |
+----------------+------------------------------------------------------------------------------------------------------------------------------------------+
| **Samples** | - Level 2: county (*n* = 734) |
| | |
| | - Level 1: person (*n* = 1,909,205) |
| | |
| | *Note: further nesting in 771,797 households, 2980 towns (streets) and 5964 communities (villages) from 31 province was not modeled* |
+----------------+------------------------------------------------------------------------------------------------------------------------------------------+
| **Missing** | *-not mentioned-* |
+----------------+------------------------------------------------------------------------------------------------------------------------------------------+
| **Centering** | *-not mentioned-* |
+----------------+------------------------------------------------------------------------------------------------------------------------------------------+
| **Components** | ICC, adjusted odds ratios from GzLMM, subgroup analysis by gender |
+----------------+------------------------------------------------------------------------------------------------------------------------------------------+
| **Results** | Tables of un-adjusted and adjusted odds ratios |
+----------------+------------------------------------------------------------------------------------------------------------------------------------------+
| **Software** | **Stata** version 13.0 for Windows |
+----------------+------------------------------------------------------------------------------------------------------------------------------------------+
![](images/china_gzlmm_or_table.PNG){width="588"}
## Repeated Measures: longitudinal (change over time) or conditional (no time component)
### Repeated Measures - linear growth
```{block type='rmdlink', echo=TRUE}
**One-to-one iPad echnology in the Middle School Mathematics and Science Classrooms**
- [Public link with PDF download](https://www.learntechlib.org/p/207269/)
```
+----------------+-------------------------------------------------------------------------------------------------------------------------------------------------+
| Concept | Article Details |
+:===============+:================================================================================================================================================+
| **Terms** | hierarchical linear modeling (HLM) |
+----------------+-------------------------------------------------------------------------------------------------------------------------------------------------+
| **Samples** | - Level 2: students (*n* = 112) |
| | |
| | - Level 1: up to 6 observations across 2 years (*n* = 8718) |
| | |
| | *Note: further nesting among 10 teachers in 3 schools was not modeled* |
+----------------+-------------------------------------------------------------------------------------------------------------------------------------------------+
| **Time** | **Unclear**, but assume time is treated as 6 equally spaced intervals |
| | |
| | *(t = numeric: 0, 1, 2, 3, 4, 5)* |
+----------------+-------------------------------------------------------------------------------------------------------------------------------------------------+
| **Missing** | Students were not eliminated if they did not have six scores since HLM allows for missing data at the first level (i.e. complete case analysis) |
+----------------+-------------------------------------------------------------------------------------------------------------------------------------------------+
| **Centering** | grand mean centering for the MAP test scores |
+----------------+-------------------------------------------------------------------------------------------------------------------------------------------------+
| **Components** | Single-level OLS, Null model HLM, RIAS (random slope for time), add covars |
+----------------+-------------------------------------------------------------------------------------------------------------------------------------------------+
| **Results** | Table showing design, nested equations, several 'final' model tables of results |
+----------------+-------------------------------------------------------------------------------------------------------------------------------------------------+
| **Software** | SPSS |
+----------------+-------------------------------------------------------------------------------------------------------------------------------------------------+
![](images/article_table1_desgn_long.PNG){width="566"}
![](images/article_table4_desgn_long.PNG){width="552"}
### Cohort sequential or accelerated longitudinal design
```{block type='rmdlink', echo=TRUE}
**Examining the Links Between Received Network Support and Marital Quality Among Mothers of Children with ASD: A Longitudinal Mediation Analysis**
- [Public link](https://link.springer.com/article/10.1007/s10803-019-04330-4)
- [USU-full text link](https://link.springer.com/article/10.1007/s10803-019-04330-4)
- [PDF download](https://link.springer.com/content/pdf/10.1007/s10803-019-04330-4.pdf)
```
+----------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Concept | Article Details |
+:===============+:=============================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================+
| **Terms** | multilevel modeling (MLM), conditional growth model, longitudinal multiple mediation models |
+----------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| **Samples** | - Level 2 = mother/child (n = 96) |
| | |
| | - Level 1 = time point/age (n = 3 x 96 ? ) |
+----------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| **Time** | **Unclear**, assume time is measured in years at study years 5, 7, and 9 |
| | |
| | *(t = numeric age at each observation)* |
+----------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| **Missing** | Assumed data was missing at random, so complete-case analysis |
+----------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| **Centering** | Time-varying predictors and mediators were **disaggregated** into their constituent within and between-person effects. To assess within-person effects, Level 1 predictors were created by **person-mean centering** each predictor or mediator (i.e., subtracting each mother's cross-time mean score on a predictor from her actual score on that measure). Level 2 predictors were created by first computing a cross-time **mean** score on a predictor for each mother and then **grand-mean centering** that score. Finally, baseline child problem behavior severity was **grand-mean centered** with a mean of zero. |
+----------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| **Components** | Bivariate correlation matrix at baseline, Null for ICC, add fixed effects, mediation |
+----------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| **Results** | MLM only reported in text. All tables and figures apply to the mediation |
+----------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| **Software** | **SPSS** 25.0 with *MLmed*, a macro which tests for mediation and moderated mediation in multilevel data, Restricted maximum likelihood, 95% confidence intervals (CIs) based on Monte Carlo bootstrapping estimates |
+----------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
### SEM Framework
```{block type='rmdlink', echo=TRUE}
**Disability multilevel modelling in first episodes of psychosis at 3-year follow-up**
- [Public link with PDF download](https://www.sciencedirect.com/science/article/pii/S0920996416305886?casa_token=3gH6YZPVq50AAAAA:3i9OBbBbY5TQGX0z5UnGo6j6WXA1_4w2hlsGIQI_VDJOskJQxkvswlHgL59inQrl_qqp-NbmaQ)
```
+----------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Concept | Article Details |
+:===============+:================================================================================================================================================================================================================================================+
| **Terms** | multilevel modeling statistical approach to repeated measures data, growth model |
+----------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| **Samples** | - Level 2: participants (*n* = 449) |
| | |
| | - Level 1: observations = baseline, 1 year, and 3 years later (*n* = 3 x 449 = 1347) |
+----------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| **Time** | **Very unclear**, but it does include "linear time" in the results |
+----------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| **Missing** | Only patients providing data for all the study variables during follow-up, and those who were assessed from the beginning of the study to the 1-year and 3-year follow-up were finally analyzed. |
+----------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| **Centering** | *-not mentioned-* |
+----------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| **Components** | group comparisons with Cohen's d effect sizes, and decrease in Bayesian Information Criterion adjusted to sample size (SABIC) used to assess significance when comparing models, RIAS: Random intercepts and slope of time, assumption checking |
+----------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| **Results** | Table comparing nested models |
+----------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| **Software** | **Mplus 6.11** |
+----------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
![](images/disability_growth_mplus_table.PNG)
## Both: Hierarchical longitudinal
+---------------------+---------------------------------------------------+
| Concept | Article Details |
+:====================+:==================================================+
| **Terms** | |
+---------------------+---------------------------------------------------+
| **Samples** | - Level 2: child (*n* = 40) |
| | |
| | - Level 1: parent, mother and father (*n* = 80) |
+---------------------+---------------------------------------------------+
| **Missing** | |
+---------------------+---------------------------------------------------+
| **Centering** | |
+---------------------+---------------------------------------------------+
| **Components** | |
+---------------------+---------------------------------------------------+
| **Results** | |
+---------------------+---------------------------------------------------+
| **Software** | |
+---------------------+---------------------------------------------------+