-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtrain.py
177 lines (152 loc) · 7.21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import torch
import torch.nn as nn
import numpy as np
import random
import os
import json
import argparse
from torch.utils.data import DataLoader
from datetime import datetime
from torch.nn import functional as F
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
import logging
import open_clip
from dataset import VisaDataset, MVTecDataset
from model import LinearLayer
from loss import FocalLoss, BinaryDiceLoss
from prompt_ensemble import encode_text_with_prompt_ensemble
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def train(args):
# configs
epochs = args.epoch
learning_rate = args.learning_rate
batch_size = args.batch_size
image_size = args.image_size
device = 'cuda' if torch.cuda.is_available() else 'cpu'
save_path = args.save_path
if not os.path.exists(save_path):
os.makedirs(save_path)
txt_path = os.path.join(save_path, 'log.txt') # log
# model configs
features_list = args.features_list
with open(args.config_path, 'r') as f:
model_configs = json.load(f)
# clip model
model, _, preprocess = open_clip.create_model_and_transforms(args.model, image_size, pretrained=args.pretrained)
model.to(device)
tokenizer = open_clip.get_tokenizer(args.model)
# logger
root_logger = logging.getLogger()
for handler in root_logger.handlers[:]:
root_logger.removeHandler(handler)
root_logger.setLevel(logging.WARNING)
logger = logging.getLogger('train')
formatter = logging.Formatter('%(asctime)s.%(msecs)03d - %(levelname)s: %(message)s',
datefmt='%y-%m-%d %H:%M:%S')
logger.setLevel(logging.INFO)
file_handler = logging.FileHandler(txt_path, mode='w')
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
console_handler = logging.StreamHandler()
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
# record parameters
for arg in vars(args):
logger.info(f'{arg}: {getattr(args, arg)}')
# transforms
transform = transforms.Compose([
transforms.Resize((image_size, image_size)),
transforms.CenterCrop(image_size),
transforms.ToTensor()
])
# datasets
if args.dataset == 'mvtec':
train_data = MVTecDataset(root=args.train_data_path, transform=preprocess, target_transform=transform,
aug_rate=args.aug_rate)
else:
train_data = VisaDataset(root=args.train_data_path, transform=preprocess, target_transform=transform)
train_dataloader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True)
# linear layer
trainable_layer = LinearLayer(model_configs['vision_cfg']['width'], model_configs['embed_dim'],
len(args.features_list), args.model).to(device)
optimizer = torch.optim.Adam(list(trainable_layer.parameters()), lr=learning_rate, betas=(0.5, 0.999))
# losses
loss_focal = FocalLoss()
loss_dice = BinaryDiceLoss()
# text prompt
with torch.cuda.amp.autocast(), torch.no_grad():
obj_list = train_data.get_cls_names()
text_prompts = encode_text_with_prompt_ensemble(model, obj_list, tokenizer, device)
for epoch in range(epochs):
loss_list = []
idx = 0
for items in train_dataloader:
idx += 1
image = items['img'].to(device)
cls_name = items['cls_name']
with torch.cuda.amp.autocast():
with torch.no_grad():
image_features, patch_tokens = model.encode_image(image, features_list)
text_features = []
for cls in cls_name:
text_features.append(text_prompts[cls])
text_features = torch.stack(text_features, dim=0)
# pixel level
patch_tokens = trainable_layer(patch_tokens)
anomaly_maps = []
for layer in range(len(patch_tokens)):
patch_tokens[layer] /= patch_tokens[layer].norm(dim=-1, keepdim=True)
anomaly_map = (100.0 * patch_tokens[layer] @ text_features)
B, L, C = anomaly_map.shape
H = int(np.sqrt(L))
anomaly_map = F.interpolate(anomaly_map.permute(0, 2, 1).view(B, 2, H, H),
size=image_size, mode='bilinear', align_corners=True)
anomaly_map = torch.softmax(anomaly_map, dim=1)
anomaly_maps.append(anomaly_map)
# losses
gt = items['img_mask'].squeeze().to(device)
gt[gt > 0.5], gt[gt <= 0.5] = 1, 0
loss = 0
for num in range(len(anomaly_maps)):
loss += loss_focal(anomaly_maps[num], gt)
loss += loss_dice(anomaly_maps[num][:, 1, :, :], gt)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_list.append(loss.item())
# logs
if (epoch + 1) % args.print_freq == 0:
logger.info('epoch [{}/{}], loss:{:.4f}'.format(epoch + 1, epochs, np.mean(loss_list)))
# save model
if (epoch + 1) % args.save_freq == 0:
ckp_path = os.path.join(save_path, 'epoch_' + str(epoch + 1) + '.pth')
torch.save({'trainable_linearlayer': trainable_layer.state_dict()}, ckp_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser("VAND Challenge", add_help=True)
# path
parser.add_argument("--train_data_path", type=str, default="./data/visa", help="train dataset path")
parser.add_argument("--save_path", type=str, default='./exps/vit_large_14_518', help='path to save results')
parser.add_argument("--config_path", type=str, default='./open_clip/model_configs/ViT-B-16.json', help="model configs")
# model
parser.add_argument("--dataset", type=str, default='mvtec', help="train dataset name")
parser.add_argument("--model", type=str, default="ViT-B-16", help="model used")
parser.add_argument("--pretrained", type=str, default="laion400m_e32", help="pretrained weight used")
parser.add_argument("--features_list", type=int, nargs="+", default=[3, 6, 9], help="features used")
# hyper-parameter
parser.add_argument("--epoch", type=int, default=200, help="epochs")
parser.add_argument("--learning_rate", type=float, default=0.001, help="learning rate")
parser.add_argument("--batch_size", type=int, default=16, help="batch size")
parser.add_argument("--image_size", type=int, default=224, help="image size")
parser.add_argument("--aug_rate", type=float, default=0.2, help="image size")
parser.add_argument("--print_freq", type=int, default=30, help="print frequency")
parser.add_argument("--save_freq", type=int, default=3, help="save frequency")
args = parser.parse_args()
setup_seed(111)
train(args)