-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsample.conf
90 lines (73 loc) · 3.18 KB
/
sample.conf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#Customize variables here:######################################################
################################################################################
#Load the files:
#
infiles <- setup_BWASPR(datafile="../inst/extdata/AmHE.dat",
parfile="../inst/extdata/AmHE.par")
#Set the study and samples in the study:
#
species <- "Am"
study <- "HE"
samplelist <- list("forager","nurse")
## The following two variables are used for output file labeling:
studyLabel <- "HE"
sampleLabels <- list("Am_HE_fr","Am_HE_rn")
hasreplicates <- FALSE
type <- "CpG"
destrand <- TRUE
covlist <- c(6,20,50)
locount <- 100
hicount <- 1000
repcovlist <- c(6,10,15)
replocount <- 10
rephicount <- 100
hheight <- 0.120
nbrpnts <- 5000
## The following four variables are sent to rank_rbm() and determine what data
# points get plotted:
minnbrmsprm <- 5 # minimum number of methylation sites per promoter
mingenewidth <- 500 # minimum gene width
maxgenewidth <- 5000 # maximum gene width
minnbrmsgene <- 5 # minimum number of methylation sites per gene
## Other parameters (see Rscript.BWASPR for usage notes):
#
filter.lo.count <- NULL # option to MethylKit::filterByCoverage prior to CRL analysis
filter.lo.perc <- NULL # option to MethylKit::filterByCoverage prior to CRL analysis
filter.hi.count <- NULL # option to MethylKit::filterByCoverage prior to CRL analysis
filter.hi.perc <- NULL # option to MethylKit::filterByCoverage prior to CRL analysis
highcoverage <- 20 # high read coverage threshold for studyhc methylRawList object
threshold <- 20.0 # "difference" threshold for getMethylDiff(), called by det_dmsg()
qvalue <- 0.05 # "qvalue" setting for getMethylDiff(), called by det_dmsg()
wsize <- 500 # "win.size" parameter for tileMethylCounts() in det_dmt()
stepsize <- 500 # "step.size" parameter for tileMethylCounts() in det_dmt()
minNsites <- 1 # minimum number of hc sites in a gene to be heatmapped in show_dmsg()
maxNsites <- 60 # maximum number of hc sites in a gene to be heatmapped in show_dmsg()
minPdmsites <- 10 # minimum ratio of dm/hc (in %) in a gene to be heatmapped in show_dmsg()
maxgwidth <- 20000 # maximal gene width for a gene to be considered by explore_dmsg()
minnbrdmsites <- 1 # minimum number of differentially methylated sites for a gene to be
# considered in sample comparisons by explore_dmsg()
glink <- "NCBIgene" # URL to show in explore_dmsg(); options: "" or "NCBIgene"
#Set the number of processors to use:
#
numprc <- 4
#Determine what analyses to run:
#
RUNload <- FALSE
RUNcms <- TRUE
RUNpwc <- TRUE
RUNcrl <- TRUE
RUNrepcms <- TRUE
RUNrepcrl <- TRUE
RUNmmp <- TRUE
RUNacs <- TRUE
RUNrnk <- TRUE
RUNmrpr <- TRUE
RUNdmt <- TRUE
RUNdmsg <- TRUE
RUNdmgdtls <- TRUE
RUNogl <- TRUE
RUNsave <- FALSE
mymessage <- sprintf("\nAnalyzing %s study %s for type %s\n\n",species,studyLabel,type)
message(mymessage)
################################################################################
#End of typical customization.##################################################