-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathi2c_reva.c
1602 lines (1273 loc) · 47.5 KB
/
i2c_reva.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/******************************************************************************
*
* Copyright (C) 2022-2023 Maxim Integrated Products, Inc. All Rights Reserved.
* (now owned by Analog Devices, Inc.),
* Copyright (C) 2023 Analog Devices, Inc. All Rights Reserved. This software
* is proprietary to Analog Devices, Inc. and its licensors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
#include <stdio.h>
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#include "mxc_device.h"
#include "mxc_assert.h"
#include "mxc_lock.h"
#include "mxc_sys.h"
#include "mxc_delay.h"
#include "i2c_regs.h"
#include "i2c.h"
#include "i2c_reva.h"
#include "dma.h"
#include "dma_reva.h"
/* **** Variable Declaration **** */
typedef struct {
mxc_i2c_reva_req_t *req;
int master; // 1 for Master, 0 for slave
int channelTx; // DMA channel for TX transaction
int channelRx; // DMA channel for RX transaction
volatile int writeDone; // Write done flag
volatile int readDone; // Flag done flag
bool dma_initialized; // Check to see whether DMA was initialized
mxc_dma_reva_regs_t *dma; // Save DMA Instance
} mxc_i2c_reva_req_state_t;
static mxc_i2c_reva_req_state_t states[MXC_I2C_INSTANCES];
void *AsyncRequests[MXC_I2C_INSTANCES];
unsigned int AsyncWritten[MXC_I2C_INSTANCES];
unsigned int AsyncRead[MXC_I2C_INSTANCES];
/* **** Function Prototypes **** */
void MXC_I2C_RevA_AsyncCallback(mxc_i2c_reva_regs_t *i2c, int retVal);
void MXC_I2C_RevA_AsyncStop(mxc_i2c_reva_regs_t *i2c);
void MXC_I2C_RevA_AbortAsync(mxc_i2c_reva_regs_t *i2c);
void MXC_I2C_RevA_MasterAsyncHandler(int i2cNum);
int MXC_I2C_RevA_DMAHandler(mxc_i2c_reva_req_t *req);
void MXC_I2C_RevA_SlaveAsyncHandler(mxc_i2c_reva_regs_t *i2c, mxc_i2c_reva_slave_handler_t callback,
uint32_t *int_en, int *retVal);
/* ************************************************************************* */
/* Control/Configuration functions */
/* ************************************************************************* */
int MXC_I2C_RevA_Init(mxc_i2c_reva_regs_t *i2c, int masterMode, unsigned int slaveAddr)
{
int err;
int8_t i2cNum;
if (i2c == NULL) {
return E_NULL_PTR;
}
i2cNum = MXC_I2C_GET_IDX((mxc_i2c_regs_t *)i2c);
if ((err = MXC_I2C_Recover((mxc_i2c_regs_t *)i2c, 16)) != E_NO_ERROR) {
return err;
}
i2c->ctrl |= MXC_F_I2C_REVA_CTRL_EN;
MXC_I2C_ClearRXFIFO((mxc_i2c_regs_t *)i2c);
MXC_I2C_ClearTXFIFO((mxc_i2c_regs_t *)i2c);
// Set the thresholds here and allow the user to change them as needed
MXC_I2C_SetTXThreshold((mxc_i2c_regs_t *)i2c, 2); // set TX threshold to 2 bytes
MXC_I2C_SetRXThreshold((mxc_i2c_regs_t *)i2c, 6); // set RX threshold to 6 bytes
if (!masterMode) {
MXC_I2C_SetSlaveAddr((mxc_i2c_regs_t *)i2c, slaveAddr, 0);
states[MXC_I2C_GET_IDX((mxc_i2c_regs_t *)i2c)].master = 0;
} else {
i2c->ctrl |= MXC_F_I2C_REVA_CTRL_MST_MODE;
states[MXC_I2C_GET_IDX((mxc_i2c_regs_t *)i2c)].master = 1;
}
// Prepare I2C instance state.
states[i2cNum].channelTx = E_NO_DEVICE;
states[i2cNum].channelRx = E_NO_DEVICE;
states[i2cNum].writeDone = 0;
states[i2cNum].readDone = 0;
states[i2cNum].dma_initialized = false;
return E_NO_ERROR;
}
int MXC_I2C_RevA_SetSlaveAddr(mxc_i2c_reva_regs_t *i2c, unsigned int slaveAddr, int idx)
{
if (i2c == NULL) {
return E_NULL_PTR;
}
if (idx >= (sizeof(i2c->slave_multi) / sizeof(uint32_t))) {
return E_NOT_SUPPORTED;
}
if (slaveAddr > MXC_F_I2C_REVA_SLAVE_MULTI_ADDR) {
// Only support addresses up to 10 bits
return E_BAD_PARAM;
}
i2c->slave_multi[idx] = 0;
if (slaveAddr > MXC_I2C_REVA_MAX_ADDR_WIDTH) {
// Set for 10bit addressing mode
i2c->slave_multi[idx] = MXC_F_I2C_REVA_SLAVE_MULTI_EXT_ADDR_EN;
}
i2c->slave_multi[idx] |= slaveAddr;
return E_NO_ERROR;
}
int MXC_I2C_RevA_Shutdown(mxc_i2c_reva_regs_t *i2c)
{
int8_t i2cNum;
if (i2c == NULL) {
return E_NULL_PTR;
}
i2cNum = MXC_I2C_GET_IDX((mxc_i2c_regs_t *)i2c);
i2c->ctrl = 0;
i2c->inten0 = 0;
i2c->inten1 = 0;
i2c->intfl0 = i2c->intfl0;
i2c->intfl1 = i2c->intfl1;
i2c->rxctrl0 = 0;
i2c->rxctrl1 = 0;
i2c->txctrl0 = 0;
i2c->txctrl1 = 0;
states[i2cNum] = (const mxc_i2c_reva_req_state_t){ 0 };
MXC_I2C_ClearRXFIFO((mxc_i2c_regs_t *)i2c);
MXC_I2C_ClearTXFIFO((mxc_i2c_regs_t *)i2c);
if (states[i2cNum].dma_initialized == true) {
#if TARGET_NUM == 32665
MXC_DMA_DeInit((mxc_dma_regs_t *)(states[i2cNum].dma));
#else
MXC_DMA_DeInit();
#endif
// Release any acquired DMA channels.
if (states[i2cNum].channelTx >= 0) {
MXC_DMA_ReleaseChannel(states[i2cNum].channelTx);
states[i2cNum].channelTx = E_NO_DEVICE;
}
if (states[i2cNum].channelRx >= 0) {
MXC_DMA_ReleaseChannel(states[i2cNum].channelRx);
states[i2cNum].channelRx = E_NO_DEVICE;
}
}
return E_NO_ERROR;
}
int MXC_I2C_RevA_SetFrequency(mxc_i2c_reva_regs_t *i2c, unsigned int hz)
{
unsigned int ticksTotal, hiClks, lowClks;
if (i2c == NULL) {
return E_NULL_PTR;
}
if (hz > MXC_I2C_REVA_FASTPLUS_SPEED && hz <= MXC_I2C_REVA_HIGH_SPEED) {
// Enable high speed mode
int hsLowClks, hsHiClks;
// Calculate the period of SCL and set up 33% duty cycle
ticksTotal = PeripheralClock / hz;
hsLowClks = (ticksTotal * 2) / 3 - 1;
hsHiClks = ticksTotal / 3 - 1;
// For rounding errors, adjust by 1 clock tick
if (ticksTotal % 2) {
hsHiClks++;
}
// If we're too slow for high speed, bail out
if ((hsHiClks > 0xF) || (hsLowClks > 0xF)) {
return E_BAD_PARAM;
}
hsLowClks = (hsLowClks << MXC_F_I2C_REVA_HSCLK_LO_POS) & MXC_F_I2C_REVA_HSCLK_LO;
hsHiClks = (hsHiClks << MXC_F_I2C_REVA_HSCLK_HI_POS) & MXC_F_I2C_REVA_HSCLK_HI;
i2c->hsclk = (hsLowClks | hsHiClks);
i2c->ctrl |= MXC_F_I2C_REVA_CTRL_HS_EN;
hz = MXC_I2C_REVA_FAST_SPEED; // High speed preambles will be sent at 400kHz
} else if (hz > MXC_I2C_REVA_HIGH_SPEED) {
return E_BAD_PARAM;
}
// Calculate the period of SCL, 50% duty cycle
ticksTotal = PeripheralClock / hz;
hiClks = (ticksTotal >> 1) - 1;
lowClks = (ticksTotal >> 1) - 1;
// Adjust for rounding errors
if (ticksTotal % 2) {
hiClks++;
}
// Check for maximum/minimum supported speeds
if ((hiClks > MXC_F_I2C_REVA_CLKHI_HI) || (lowClks == 0)) {
return E_BAD_PARAM;
}
i2c->clklo = lowClks & MXC_F_I2C_REVA_CLKLO_LO;
i2c->clkhi = hiClks & MXC_F_I2C_REVA_CLKHI_HI;
// Return the actual speed set, since it won't be exactly what's requested
return MXC_I2C_GetFrequency((mxc_i2c_regs_t *)i2c);
}
unsigned int MXC_I2C_RevA_GetFrequency(mxc_i2c_reva_regs_t *i2c)
{
unsigned int sclCycles = 2;
// sclCycles Initialized to 2 b/c formula is sclCycles = (lo_clks + 1) + (hi_clks + 1)
if (i2c->ctrl & MXC_F_I2C_REVA_CTRL_HS_EN) {
// HS-Mode enabled, calculate HS Frequency
sclCycles += (i2c->hsclk & MXC_F_I2C_REVA_HSCLK_LO) >> MXC_F_I2C_REVA_HSCLK_LO_POS;
sclCycles += (i2c->hsclk & MXC_F_I2C_REVA_HSCLK_HI) >> MXC_F_I2C_REVA_HSCLK_HI_POS;
} else {
// HS-Mode not enabled, calculate nominal frequency
sclCycles += (i2c->clklo & MXC_F_I2C_REVA_CLKLO_LO);
sclCycles += (i2c->clkhi & MXC_F_I2C_REVA_CLKHI_HI);
}
return PeripheralClock / sclCycles;
}
int MXC_I2C_RevA_ReadyForSleep(mxc_i2c_reva_regs_t *i2c)
{
if (MXC_I2C_GET_IDX((mxc_i2c_regs_t *)i2c) < 0) {
return E_BAD_PARAM;
}
if (AsyncRequests[MXC_I2C_GET_IDX((mxc_i2c_regs_t *)i2c)] != NULL) {
return E_BUSY;
}
return E_NO_ERROR;
}
int MXC_I2C_RevA_SetClockStretching(mxc_i2c_reva_regs_t *i2c, int enable)
{
if (i2c == NULL) {
return E_NULL_PTR;
}
if (enable) {
i2c->ctrl &= ~MXC_F_I2C_REVA_CTRL_CLKSTR_DIS;
} else {
i2c->ctrl |= MXC_F_I2C_REVA_CTRL_CLKSTR_DIS;
}
return E_NO_ERROR;
}
int MXC_I2C_RevA_GetClockStretching(mxc_i2c_reva_regs_t *i2c)
{
if (i2c == NULL) {
return E_NULL_PTR;
}
return !((i2c->ctrl & MXC_F_I2C_REVA_CTRL_CLKSTR_DIS) >> MXC_F_I2C_REVA_CTRL_CLKSTR_DIS_POS);
}
int MXC_I2C_RevA_DMA_Init(mxc_i2c_reva_regs_t *i2c, mxc_dma_reva_regs_t *dma, bool use_dma_tx,
bool use_dma_rx)
{
int8_t i2cNum;
int8_t rxChannel;
int8_t txChannel;
if (i2c == NULL || dma == NULL) {
return E_NULL_PTR;
}
i2cNum = MXC_I2C_GET_IDX((mxc_i2c_regs_t *)i2c);
if (states[i2cNum].dma_initialized == false) {
#if TARGET_NUM == 32665
MXC_DMA_Init((mxc_dma_regs_t *)dma);
#else
MXC_DMA_Init();
#endif
}
// Release any acquire DMA TX channels before configuring.
if (states[i2cNum].channelTx != E_NO_DEVICE) {
MXC_DMA_ReleaseChannel(states[i2cNum].channelTx);
}
// Release any acquire DMA RX channels before configuring.
if (states[i2cNum].channelRx != E_NO_DEVICE) {
MXC_DMA_ReleaseChannel(states[i2cNum].channelRx);
}
// Set up I2C DMA TX.
if (use_dma_tx == true) {
#if TARGET_NUM == 32665
txChannel = MXC_DMA_AcquireChannel((mxc_dma_regs_t *)dma);
#else
txChannel = MXC_DMA_AcquireChannel();
#endif
// Set Source and Destination Widths.
MXC_SETFIELD(dma->ch[txChannel].ctrl, MXC_F_DMA_REVA_CTRL_SRCWD,
(MXC_DMA_WIDTH_BYTE << MXC_F_DMA_REVA_CTRL_SRCWD_POS));
MXC_SETFIELD(dma->ch[txChannel].ctrl, MXC_F_DMA_REVA_CTRL_DSTWD,
(MXC_DMA_WIDTH_BYTE << MXC_F_DMA_REVA_CTRL_DSTWD_POS));
// Set Source and Destination Increment.
MXC_SETFIELD(dma->ch[txChannel].ctrl, MXC_F_DMA_REVA_CTRL_SRCINC,
(1 << MXC_F_DMA_REVA_CTRL_SRCINC_POS));
MXC_SETFIELD(dma->ch[txChannel].ctrl, MXC_F_DMA_REVA_CTRL_DSTINC,
(0 << MXC_F_DMA_REVA_CTRL_DSTINC_POS));
if (states[i2cNum].master) {
MXC_DMA_SetCallback(txChannel, MXC_I2C_RevA_DMACallback);
} else {
MXC_DMA_SetCallback(txChannel, NULL);
}
MXC_DMA_EnableInt(txChannel);
MXC_DMA_SetChannelInterruptEn(txChannel, 0, 1);
states[i2cNum].channelTx = txChannel;
}
// Set up I2C DMA RX.
if (use_dma_rx == true) {
#if TARGET_NUM == 32665
rxChannel = MXC_DMA_AcquireChannel((mxc_dma_regs_t *)dma);
#else
rxChannel = MXC_DMA_AcquireChannel();
#endif
// Set Source and Destination Widths.
MXC_SETFIELD(dma->ch[rxChannel].ctrl, MXC_F_DMA_REVA_CTRL_SRCWD,
(MXC_DMA_WIDTH_BYTE << MXC_F_DMA_REVA_CTRL_SRCWD_POS));
MXC_SETFIELD(dma->ch[rxChannel].ctrl, MXC_F_DMA_REVA_CTRL_DSTWD,
(MXC_DMA_WIDTH_BYTE << MXC_F_DMA_REVA_CTRL_DSTWD_POS));
// Set Source and Destination Increment.
MXC_SETFIELD(dma->ch[rxChannel].ctrl, MXC_F_DMA_REVA_CTRL_SRCINC,
(0 << MXC_F_DMA_REVA_CTRL_SRCINC_POS));
MXC_SETFIELD(dma->ch[rxChannel].ctrl, MXC_F_DMA_REVA_CTRL_DSTINC,
(1 << MXC_F_DMA_REVA_CTRL_DSTINC_POS));
if (states[i2cNum].master) {
MXC_DMA_SetCallback(rxChannel, MXC_I2C_RevA_DMACallback);
} else {
MXC_DMA_SetCallback(rxChannel, NULL);
}
MXC_DMA_EnableInt(rxChannel);
MXC_DMA_SetChannelInterruptEn(rxChannel, 0, 1);
states[i2cNum].channelRx = rxChannel;
}
states[i2cNum].dma_initialized = true;
states[i2cNum].dma = dma;
return E_NO_ERROR;
}
int MXC_I2C_RevA_DMA_GetTXChannel(mxc_i2c_reva_regs_t *i2c)
{
int i2cNum;
if (i2c == NULL) {
return E_NULL_PTR;
}
i2cNum = MXC_I2C_GET_IDX((mxc_i2c_regs_t *)i2c);
return states[i2cNum].channelTx;
}
int MXC_I2C_RevA_DMA_GetRXChannel(mxc_i2c_reva_regs_t *i2c)
{
int i2cNum;
if (i2c == NULL) {
return E_NULL_PTR;
}
i2cNum = MXC_I2C_GET_IDX((mxc_i2c_regs_t *)i2c);
return states[i2cNum].channelRx;
}
int MXC_I2C_RevA_DMA_SetRequestSelect(mxc_i2c_reva_regs_t *i2c, mxc_dma_reva_regs_t *dma,
uint32_t txReqSel, uint32_t rxReqSel)
{
int i2cNum;
uint32_t txChannel;
uint32_t rxChannel;
if (i2c == NULL || dma == NULL) {
return E_NULL_PTR;
}
i2cNum = MXC_I2C_GET_IDX((mxc_i2c_regs_t *)i2c);
txChannel = states[i2cNum].channelTx;
rxChannel = states[i2cNum].channelRx;
// This function will overwrite the current DMA TX/RX Request Selects.
if (txReqSel != -1) {
MXC_SETFIELD(dma->ch[txChannel].ctrl, MXC_F_DMA_REVA_CTRL_REQUEST, txReqSel);
}
if (rxReqSel != -1) {
MXC_SETFIELD(dma->ch[rxChannel].ctrl, MXC_F_DMA_REVA_CTRL_REQUEST, rxReqSel);
}
return E_NO_ERROR;
}
/* ************************************************************************* */
/* Low-level functions */
/* ************************************************************************* */
int MXC_I2C_RevA_Start(mxc_i2c_reva_regs_t *i2c)
{
if (i2c == NULL) {
return E_NULL_PTR;
}
// If we have an incomplete transfer, we need to do a restart
if (i2c->mstctrl & MXC_F_I2C_REVA_MSTCTRL_START) {
i2c->mstctrl |= MXC_F_I2C_REVA_MSTCTRL_RESTART;
} else {
i2c->mstctrl |= MXC_F_I2C_REVA_MSTCTRL_START; // No check for start generation
}
return E_NO_ERROR;
}
int MXC_I2C_RevA_Stop(mxc_i2c_reva_regs_t *i2c)
{
if (i2c == NULL) {
return E_NULL_PTR;
}
i2c->mstctrl |= MXC_F_I2C_REVA_MSTCTRL_STOP;
while (i2c->mstctrl & MXC_F_I2C_REVA_MSTCTRL_STOP) {}
return E_NO_ERROR;
}
int MXC_I2C_RevA_WriteByte(mxc_i2c_reva_regs_t *i2c, unsigned char byte)
{
if (i2c == NULL) {
return E_NULL_PTR;
}
if (!(i2c->status & MXC_F_I2C_REVA_STATUS_TX_EM)) {
return E_OVERFLOW;
}
// I'm depending on an interrupt flag here
// This might cause issues with the transaction level functions to come
MXC_I2C_ClearFlags((mxc_i2c_regs_t *)i2c, MXC_I2C_REVA_INTFL0_MASK, MXC_I2C_REVA_INTFL1_MASK);
i2c->fifo = byte;
while (!(i2c->status & MXC_F_I2C_REVA_STATUS_TX_EM)) {}
return i2c->intfl0 & MXC_F_I2C_REVA_INTFL0_DATA_ERR;
}
int MXC_I2C_RevA_ReadByte(mxc_i2c_reva_regs_t *i2c, unsigned char *byte, int ack)
{
if ((i2c == NULL) || (byte == NULL)) {
return E_NULL_PTR;
}
if (i2c->status & MXC_F_I2C_REVA_STATUS_RX_EM) {
return E_UNDERFLOW;
}
*byte = (uint8_t)(i2c->fifo & MXC_F_I2C_REVA_FIFO_DATA);
if (ack) {
i2c->ctrl &= ~MXC_F_I2C_REVA_CTRL_IRXM_ACK;
} else {
i2c->ctrl |= MXC_F_I2C_REVA_CTRL_IRXM_ACK;
}
return E_NO_ERROR;
}
int MXC_I2C_RevA_ReadByteInteractive(mxc_i2c_reva_regs_t *i2c, unsigned char *byte,
mxc_i2c_reva_getAck_t getAck)
{
if ((i2c == NULL) || (byte == NULL)) {
return E_NULL_PTR;
}
if (!(i2c->status & MXC_F_I2C_REVA_STATUS_RX_EM)) {
return E_UNDERFLOW;
}
*byte = (uint8_t)(i2c->fifo & MXC_F_I2C_REVA_FIFO_DATA);
if (getAck == NULL) {
i2c->ctrl &= ~MXC_F_I2C_REVA_CTRL_IRXM_ACK_POS;
} else {
i2c->ctrl |= (!!getAck((mxc_i2c_reva_regs_t *)i2c, *byte))
<< MXC_F_I2C_REVA_CTRL_IRXM_ACK_POS;
}
return E_NO_ERROR;
}
int MXC_I2C_RevA_Write(mxc_i2c_reva_regs_t *i2c, unsigned char *bytes, unsigned int *len)
{
int notAcked = 0;
unsigned written = 0;
if (i2c == NULL) {
return E_NULL_PTR;
}
if ((bytes == NULL) || (len == NULL)) {
return E_NULL_PTR;
}
for (; written < *len; written++) {
int retVal = MXC_I2C_WriteByte((mxc_i2c_regs_t *)i2c, bytes[written]);
if (retVal >= 0) {
notAcked += retVal;
} else {
*len = written;
return retVal;
}
}
*len = written;
notAcked = (notAcked > 0) ? 1 : 0;
return notAcked;
}
int MXC_I2C_RevA_Read(mxc_i2c_reva_regs_t *i2c, unsigned char *bytes, unsigned int *len, int ack)
{
unsigned read = 0;
if (i2c == NULL) {
return E_NULL_PTR;
}
if ((bytes == NULL) || (len == NULL)) {
return E_NULL_PTR;
}
for (; read < *len - 1; read++) {
int retVal = MXC_I2C_ReadByte((mxc_i2c_regs_t *)i2c, &(bytes[read]), 1);
if (retVal != E_NO_ERROR) {
*len = read;
return retVal;
}
}
read++;
*len = read;
return MXC_I2C_ReadByte((mxc_i2c_regs_t *)i2c, &(bytes[read]), ack);
}
int MXC_I2C_RevA_ReadRXFIFO(mxc_i2c_reva_regs_t *i2c, volatile unsigned char *bytes,
unsigned int len)
{
unsigned read = 0;
if ((i2c == NULL) || (bytes == NULL)) {
return E_NULL_PTR;
}
while ((len > read) && (!(i2c->status & MXC_F_I2C_REVA_STATUS_RX_EM))) {
bytes[read++] = i2c->fifo;
}
return read;
}
int MXC_I2C_RevA_ReadRXFIFODMA(mxc_i2c_reva_regs_t *i2c, unsigned char *bytes, unsigned int len,
mxc_dma_regs_t *dma)
{
uint8_t i2cNum;
mxc_dma_srcdst_t srcdst;
if ((i2c == NULL) || (bytes == NULL)) {
return E_NULL_PTR;
}
i2cNum = MXC_I2C_GET_IDX((mxc_i2c_regs_t *)i2c);
if (states[i2cNum].channelRx == E_NO_DEVICE) {
return E_BAD_STATE;
}
srcdst.ch = states[i2cNum].channelRx;
srcdst.dest = bytes;
srcdst.len = len;
MXC_DMA_SetSrcDst(srcdst);
MXC_DMA_Start(states[i2cNum].channelRx);
i2c->dma |= MXC_F_I2C_REVA_DMA_RX_EN;
return E_NO_ERROR;
}
int MXC_I2C_RevA_GetRXFIFOAvailable(mxc_i2c_reva_regs_t *i2c)
{
if (i2c == NULL) {
return E_NULL_PTR;
}
return (i2c->rxctrl1 & MXC_F_I2C_REVA_RXCTRL1_LVL) >> MXC_F_I2C_REVA_RXCTRL1_LVL_POS;
}
int MXC_I2C_RevA_WriteTXFIFO(mxc_i2c_reva_regs_t *i2c, volatile unsigned char *bytes,
unsigned int len)
{
unsigned written = 0;
if ((i2c == NULL) || (bytes == NULL)) {
return E_NULL_PTR;
}
while ((len > written) && (!(i2c->status & MXC_F_I2C_REVA_STATUS_TX_FULL))) {
i2c->fifo = bytes[written++];
}
return written;
}
int MXC_I2C_RevA_WriteTXFIFODMA(mxc_i2c_reva_regs_t *i2c, unsigned char *bytes, unsigned int len,
mxc_dma_regs_t *dma)
{
int8_t i2cNum;
mxc_dma_srcdst_t srcdst;
if ((i2c == NULL) || (bytes == NULL)) {
return E_NULL_PTR;
}
i2cNum = MXC_I2C_GET_IDX((mxc_i2c_regs_t *)i2c);
i2c->mstctrl |= MXC_F_I2C_REVA_MSTCTRL_START;
if (states[i2cNum].channelTx == E_NO_DEVICE) {
return E_BAD_STATE;
}
srcdst.ch = states[i2cNum].channelTx;
srcdst.source = bytes;
srcdst.len = len;
MXC_DMA_SetSrcDst(srcdst);
MXC_DMA_Start(states[i2cNum].channelTx);
i2c->dma |= MXC_F_I2C_REVA_DMA_TX_EN;
return E_NO_ERROR;
}
int MXC_I2C_RevA_GetTXFIFOAvailable(mxc_i2c_reva_regs_t *i2c)
{
if (i2c == NULL) {
return E_NULL_PTR;
}
int txFIFOlen = (i2c->fifolen & MXC_F_I2C_REVA_FIFOLEN_TX_DEPTH) >>
MXC_F_I2C_REVA_FIFOLEN_TX_DEPTH_POS;
return txFIFOlen -
((i2c->txctrl1 & MXC_F_I2C_REVA_TXCTRL1_LVL) >> MXC_F_I2C_REVA_TXCTRL1_LVL_POS);
}
void MXC_I2C_RevA_ClearRXFIFO(mxc_i2c_reva_regs_t *i2c)
{
i2c->rxctrl0 |= MXC_F_I2C_REVA_RXCTRL0_FLUSH;
while (i2c->rxctrl0 & MXC_F_I2C_REVA_RXCTRL0_FLUSH) {}
}
void MXC_I2C_RevA_ClearTXFIFO(mxc_i2c_reva_regs_t *i2c)
{
i2c->txctrl0 |= MXC_F_I2C_REVA_TXCTRL0_FLUSH;
while (i2c->txctrl0 & MXC_F_I2C_REVA_TXCTRL0_FLUSH) {}
}
int MXC_I2C_RevA_GetFlags(mxc_i2c_reva_regs_t *i2c, unsigned int *flags0, unsigned int *flags1)
{
if (i2c == NULL) {
return E_NULL_PTR;
}
if ((flags0 == NULL) || (flags1 == NULL)) {
return E_BAD_PARAM;
}
*flags0 = i2c->intfl0;
*flags1 = i2c->intfl1;
return E_NO_ERROR;
}
void MXC_I2C_RevA_ClearFlags(mxc_i2c_reva_regs_t *i2c, unsigned int flags0, unsigned int flags1)
{
i2c->intfl0 = flags0;
i2c->intfl1 = flags1;
}
void MXC_I2C_RevA_EnableInt(mxc_i2c_reva_regs_t *i2c, unsigned int flags0, unsigned int flags1)
{
i2c->inten0 |= flags0;
i2c->inten1 |= flags1;
}
void MXC_I2C_RevA_DisableInt(mxc_i2c_reva_regs_t *i2c, unsigned int flags0, unsigned int flags1)
{
i2c->inten0 &= ~flags0;
i2c->inten1 &= ~flags1;
}
int MXC_I2C_RevA_Recover(mxc_i2c_reva_regs_t *i2c, unsigned int retries)
{
int err;
unsigned int i;
if (i2c == NULL) {
return E_NULL_PTR;
}
err = E_COMM_ERR;
i2c->ctrl |= MXC_F_I2C_REVA_CTRL_EN;
int swBit = i2c->ctrl & MXC_F_I2C_REVA_CTRL_BB_MODE;
if (i2c == NULL) {
return E_NULL_PTR;
}
i2c->ctrl |= MXC_F_I2C_REVA_CTRL_BB_MODE;
// Follow the procedure detailed in the header file
// Delay 10uS between each step to give the line/slaves time to react
for (i = 0; i < retries; i++) {
MXC_Delay(10);
i2c->ctrl &= ~MXC_F_I2C_REVA_CTRL_SCL_OUT;
MXC_Delay(10);
if (i2c->ctrl & MXC_F_I2C_REVA_CTRL_SCL) {
i2c->ctrl |= MXC_F_I2C_REVA_CTRL_SCL_OUT | MXC_F_I2C_REVA_CTRL_SDA_OUT;
continue; // Give up and try again
}
MXC_Delay(10);
i2c->ctrl &= ~MXC_F_I2C_REVA_CTRL_SDA_OUT;
MXC_Delay(10);
if (i2c->ctrl & MXC_F_I2C_REVA_CTRL_SDA) {
i2c->ctrl |= MXC_F_I2C_REVA_CTRL_SCL_OUT | MXC_F_I2C_REVA_CTRL_SDA_OUT;
continue; // Give up and try again
}
MXC_Delay(10);
i2c->ctrl |= MXC_F_I2C_REVA_CTRL_SDA_OUT;
MXC_Delay(10);
if (!(i2c->ctrl & MXC_F_I2C_REVA_CTRL_SDA)) {
i2c->ctrl |= MXC_F_I2C_REVA_CTRL_SCL_OUT | MXC_F_I2C_REVA_CTRL_SDA_OUT;
continue; // Give up and try again
}
MXC_Delay(10);
i2c->ctrl |= MXC_F_I2C_REVA_CTRL_SCL_OUT;
MXC_Delay(10);
if (i2c->ctrl & MXC_F_I2C_REVA_CTRL_SCL) {
err = E_NO_ERROR; // We have control
break;
}
}
if (swBit == 0) {
i2c->ctrl &= ~MXC_F_I2C_REVA_CTRL_BB_MODE;
}
i2c->ctrl &= ~MXC_F_I2C_REVA_CTRL_EN;
return err;
}
void MXC_I2C_RevA_EnablePreload(mxc_i2c_reva_regs_t *i2c)
{
i2c->txctrl0 |= MXC_F_I2C_REVA_TXCTRL0_PRELOAD_MODE;
}
void MXC_I2C_RevA_DisablePreload(mxc_i2c_reva_regs_t *i2c)
{
i2c->txctrl0 &= ~MXC_F_I2C_REVA_TXCTRL0_PRELOAD_MODE;
}
void MXC_I2C_RevA_EnableGeneralCall(mxc_i2c_reva_regs_t *i2c)
{
i2c->ctrl |= MXC_F_I2C_REVA_CTRL_GC_ADDR_EN;
}
void MXC_I2C_RevA_DisableGeneralCall(mxc_i2c_reva_regs_t *i2c)
{
i2c->ctrl &= ~MXC_F_I2C_REVA_CTRL_GC_ADDR_EN;
}
void MXC_I2C_RevA_SetTimeout(mxc_i2c_reva_regs_t *i2c, unsigned int timeout)
{
i2c->timeout |= (timeout & 0xFFFF);
}
unsigned int MXC_I2C_RevA_GetTimeout(mxc_i2c_reva_regs_t *i2c)
{
return (i2c->timeout & 0xFFFF);
}
/* ************************************************************************* */
/* Transaction level functions */
/* ************************************************************************* */
int MXC_I2C_RevA_MasterTransaction(mxc_i2c_reva_req_t *req)
{
mxc_i2c_reva_regs_t *i2c = req->i2c; // Save off pointer for faster access
unsigned int written = 0;
unsigned int read = 0;
if (req->addr > MXC_I2C_REVA_MAX_ADDR_WIDTH) {
return E_NOT_SUPPORTED;
}
if (MXC_I2C_GET_IDX((mxc_i2c_regs_t *)i2c) < 0) {
return E_BAD_PARAM;
}
if (!(i2c->ctrl & MXC_F_I2C_REVA_CTRL_MST_MODE)) {
return E_BAD_STATE;
}
// if(!read | write)
// Start
// send addr w/ write bit
// if(Write)
// send tx_len data
// return if error (or NACK)
// if(Read)
// if(Write)
// send restart
// else
// send start
// send addr w/ read bit
// read rx_len bytes acking all
// stop or restart
// return good or error
MXC_I2C_ClearFlags((mxc_i2c_regs_t *)i2c, MXC_I2C_REVA_INTFL0_MASK,
MXC_I2C_REVA_INTFL1_MASK); // Clear all I2C Interrupts
MXC_I2C_ClearTXFIFO((mxc_i2c_regs_t *)i2c);
MXC_I2C_ClearRXFIFO((mxc_i2c_regs_t *)i2c);
i2c->inten0 = 0;
i2c->inten1 = 0;
if ((req->rx_len == 0) || (req->tx_len != 0)) {
// Load the slave address with write bit set
i2c->fifo = (req->addr << 1) & ~0x1;
i2c->mstctrl |= MXC_F_I2C_REVA_MSTCTRL_START;
}
while (req->tx_len > written) {
if (i2c->intfl0 & MXC_F_I2C_REVA_INTFL0_TX_THD) {
written += MXC_I2C_WriteTXFIFO((mxc_i2c_regs_t *)i2c, &req->tx_buf[written],
req->tx_len - written);
i2c->intfl0 = MXC_F_I2C_REVA_INTFL0_TX_THD;
}
if (i2c->intfl0 & MXC_I2C_REVA_ERROR) {
req->tx_len = written;
MXC_I2C_Stop((mxc_i2c_regs_t *)i2c);
return E_COMM_ERR;
}
}
MXC_I2C_ClearFlags((mxc_i2c_regs_t *)i2c,
MXC_F_I2C_REVA_INTFL0_DONE | MXC_F_I2C_REVA_INTFL0_RX_THD, 0);
if (req->rx_len != 0) {
if (req->rx_len > MXC_I2C_REVA_MAX_FIFO_TRANSACTION) {
i2c->rxctrl1 = 0;
} else {
i2c->rxctrl1 = req->rx_len; // 0 for 256, otherwise number of bytes to read
}
MXC_I2C_Start((mxc_i2c_regs_t *)i2c); // Start or Restart as needed
while (i2c->mstctrl & MXC_F_I2C_REVA_MSTCTRL_RESTART) {}
i2c->fifo = (req->addr << 1) | 0x1; // Load slave address with read bit.
}
while (req->rx_len > read) {
if (i2c->intfl0 & (MXC_F_I2C_REVA_INTFL0_RX_THD | MXC_F_I2C_REVA_INTFL0_DONE)) {
read +=
MXC_I2C_ReadRXFIFO((mxc_i2c_regs_t *)i2c, &req->rx_buf[read], req->rx_len - read);
i2c->intfl0 = MXC_F_I2C_REVA_INTFL0_RX_THD;
}
if (i2c->intfl0 & MXC_I2C_REVA_ERROR) {
req->rx_len = read;
MXC_I2C_Stop((mxc_i2c_regs_t *)i2c);
return E_COMM_ERR;
}
/*
if ((i2c->intfl0 & MXC_F_I2C_REVA_INTFL0_DONE) && (req->rx_len > read) &&
(MXC_I2C_RevA_GetRXFIFOAvailable(i2c) == 0)) {
if ((req->rx_len - read) > MXC_I2C_REVA_MAX_FIFO_TRANSACTION) {
i2c->rxctrl1 = 0;
} else {
i2c->rxctrl1 = (req->rx_len - read); // 0 for 256, otherwise number of bytes to read
}
i2c->mstctrl |= MXC_F_I2C_REVA_MSTCTRL_RESTART;
i2c->intfl0 = MXC_F_I2C_REVA_INTFL0_DONE;
i2c->fifo = (req->addr << 1) | 0x1; // Load slave address with read bit.
}
*/
}
if (req->restart) {
i2c->mstctrl |= MXC_F_I2C_REVA_MSTCTRL_RESTART;
} else {
i2c->mstctrl |= MXC_F_I2C_REVA_MSTCTRL_STOP;
while (!(i2c->intfl0 & MXC_F_I2C_REVA_INTFL0_STOP)) {}
// Wait for Transaction to finish
}
while (!(i2c->intfl0 & MXC_F_I2C_REVA_INTFL0_DONE)) {}
// Wait for Transaction to finish
i2c->intfl0 = MXC_F_I2C_REVA_INTFL0_DONE | MXC_F_I2C_REVA_INTFL0_STOP;
if (i2c->intfl0 & MXC_I2C_REVA_ERROR) {
return E_COMM_ERR;
}
return E_NO_ERROR;
}
int MXC_I2C_RevA_MasterTransactionAsync(mxc_i2c_reva_req_t *req)
{
int i2cNum = MXC_I2C_GET_IDX((mxc_i2c_regs_t *)(req->i2c));
mxc_i2c_reva_regs_t *i2c = req->i2c;