-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrainer.py
74 lines (59 loc) · 2.68 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# Copyright (c) 2018-present, Royal Bank of Canada.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import os
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataset import Dataset
from params import Params
from de_distmult import DE_DistMult
from de_transe import DE_TransE
from de_simple import DE_SimplE
from tester import Tester
class Trainer:
def __init__(self, dataset, params, model_name):
instance_gen = globals()[model_name]
self.model_name = model_name
self.model = nn.DataParallel(instance_gen(dataset=dataset, params=params))
self.dataset = dataset
self.params = params
def train(self, early_stop=False):
self.model.train()
optimizer = torch.optim.Adam(
self.model.parameters(),
lr=self.params.lr,
weight_decay=self.params.reg_lambda
) #weight_decay corresponds to L2 regularization
loss_f = nn.CrossEntropyLoss()
for epoch in range(1, self.params.ne + 1):
last_batch = False
total_loss = 0.0
start = time.time()
while not last_batch:
optimizer.zero_grad()
heads, rels, tails, years, months, days = self.dataset.nextBatch(self.params.bsize, neg_ratio=self.params.neg_ratio)
last_batch = self.dataset.wasLastBatch()
scores = self.model(heads, rels, tails, years, months, days)
###Added for softmax####
num_examples = int(heads.shape[0] / (1 + self.params.neg_ratio))
scores_reshaped = scores.view(num_examples, self.params.neg_ratio+1)
l = torch.zeros(num_examples).long().cuda()
loss = loss_f(scores_reshaped, l)
loss.backward()
optimizer.step()
total_loss += loss.cpu().item()
print(time.time() - start)
print("Loss in iteration " + str(epoch) + ": " + str(total_loss) + "(" + self.model_name + "," + self.dataset.name + ")")
if epoch % self.params.save_each == 0:
self.saveModel(epoch)
def saveModel(self, chkpnt):
print("Saving the model")
directory = "models/" + self.model_name + "/" + self.dataset.name + "/"
if not os.path.exists(directory):
os.makedirs(directory)
torch.save(self.model, directory + self.params.str_() + "_" + str(chkpnt) + ".chkpnt")