-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinfer.py
308 lines (240 loc) · 10.9 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
"""
Written by Nathan Neeteson
Segment images using a trained U-Net and optionally, compare to reference segmentations.
"""
import numpy as np
import torch
from torchvision.transforms import Compose
from torch.utils.data import DataLoader
from models.UNet import UNet
from dataset.SamplePadder import SamplePadder
from dataset.SampleStandardizer import SampleStandardizer
from dataset.SampleToTensors import SampleToTensors
from dataset.HRpQCTAIMDataset import HRpQCTAIMDataset
from utils.logging import Logger
from utils.segmentation_evaluation import (
calculate_dice_and_jaccard, calculate_surface_distance_measures
)
from utils.image_export import save_numpy_array_as_image, save_mask_as_AIM
from utils.postprocessing import postprocess_masks_iterative
from utils.image_export import save_mask_as_AIM
from traintest.infer import infer
import os
import argparse
def check_odd_integer(value):
ivalue = int(value)
if not (ivalue % 2):
raise argparse.ArgumentTypeError(f"{ivalue} is not a valid odd integer")
return ivalue
def create_parser():
parser = argparse.ArgumentParser(
description='HRpQCT Segmentation 2D UNet Inference Script',
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
'--data-dir', type=str, default='./data/test/', metavar='STR',
help='path of directory containing images to do inference on'
)
parser.add_argument(
'--trained-model', type=str, default='./trained_models/', metavar='STR',
help='path of trained model'
)
parser.add_argument(
'--model-filters', type=int, nargs='+', default=[32, 64, 128, 256], metavar='N',
help='sequence of filters in U-Net layers'
)
parser.add_argument(
'--channels-per-group', type=int, default=16, metavar='N',
help='channels per group in GroupNorm'
)
parser.add_argument(
'--dropout', type=float, default=0.1, metavar='D',
help='dropout probability'
)
parser.add_argument(
'--min-density', type=float, default=-400, metavar='D',
help='minimum physiologically relevant density in the image [mg HA/ccm]'
)
parser.add_argument(
'--max-density', type=float, default=1400, metavar='D',
help='maximum physiologically relevant density in the image [mg HA/ccm]'
)
parser.add_argument(
'--input-channels', type=check_odd_integer, default=5, metavar='N',
help='number slices to use as input for each slice prediction, must be odd'
)
parser.add_argument(
'--output-channels', type=int, default=2, metavar='N',
help='number of channels in the output data'
)
parser.add_argument(
'--cuda', action='store_true', default=False,
help='enable cuda processing'
)
parser.add_argument(
'--load-ref-masks', action='store_true', default=False,
help='load reference masks'
)
parser.add_argument(
'--evaluate', action='store_true', default=False,
help='evaluate quality of predictions (requires reference masks)'
)
parser.add_argument(
'--spacing', type=float, default=61e-6, metavar='S',
help='isometric voxel width [m]'
)
parser.add_argument(
'--visualize', action='store_true', default=False,
help='plot the masks and also save a bunch of images'
)
parser.add_argument(
'--write-aims', action='store_true', default=False,
help='write the final masks out as aims'
)
return parser
def main():
parser = create_parser()
args = parser.parse_args()
# slice to plot
plot_idx = 168 // 2
# create predictions sub-directory
pred_dir = args.data_dir + 'predictions/'
if not (os.path.isdir(pred_dir)):
os.mkdir(pred_dir)
if args.evaluate:
eval_file = pred_dir + 'evaluation.csv'
# check what device to use
device = torch.device("cuda" if (torch.cuda.is_available() and args.cuda) else "cpu")
# create the model
model = UNet(args.input_channels, args.output_channels,
args.model_filters, args.channels_per_group, args.dropout)
model.float()
model.to(device)
# load the trained model parameters
model.load_state_dict(torch.load(args.trained_model, map_location=device))
# create dataset transforms
data_transforms = Compose([
SamplePadder(2 ** (len(args.model_filters) - 1)),
SampleStandardizer(args.min_density, args.max_density),
SampleToTensors(ohe=False)
])
# create dataset
dataset = HRpQCT_AIM_Dataset(args.data_dir, transform=data_transforms, load_masks=args.load_ref_masks)
# create kwargs for dataloader
dataloader_kwargs = {
'batch_size': 1,
'shuffle': False
}
# createkwargs for dataset and dataloader for single images
image_dataset_kwargs = {
'num_adjacent_slices': (args.input_channels - 1) // 2
}
image_dataloader_kwargs = {
'batch_size': 1,
'shuffle': False
}
# create the overall dataloader
dataloader = DataLoader(dataset, **dataloader_kwargs)
# create a logger for dice scores if doingt that
if args.evaluate:
eval_metrics = ['dice', 'jaccard', 'ssd_max', 'ssd_mean']
eval_masks = ['cort', 'trab']
eval_methods = ['raw', 'post']
eval_fields = ['name']
for eval_metric in eval_metrics:
for eval_mask in eval_masks:
for eval_method in eval_methods:
eval_fields.append(f'{eval_metric}_{eval_mask}_{eval_method}')
eval_logger = Logger(eval_file, eval_fields)
# iterate through the images
for idx, image in enumerate(dataloader):
labels = image['labels'][0, 0, :, :, :].cpu().detach().numpy()
image_data = image['image'][0, 0, :, :, :].cpu().detach().numpy()
cort_mask_reference = labels == 0
trab_mask_reference = labels == 1
image_name = os.path.splitext(image['name'][0])[0]
phi_peri, phi_endo = infer(
args, model, device, image,
image_dataset_kwargs, image_dataloader_kwargs
)
cort_mask = (phi_peri < 0) * (phi_endo > 0)
trab_mask = phi_endo < 0
cort_mask_post, trab_mask_post = postprocess_masks_iterative(
image_data, cort_mask, trab_mask, visualize=args.visualize
)
if args.evaluate:
eval_logger.set_field_value('name', image_name)
dice_cort_raw, jaccard_cort_raw = calculate_dice_and_jaccard(cort_mask, cort_mask_reference)
dice_trab_raw, jaccard_trab_raw = calculate_dice_and_jaccard(trab_mask, trab_mask_reference)
dice_cort_post, jaccard_cort_post = calculate_dice_and_jaccard(cort_mask_post, cort_mask_reference)
dice_trab_post, jaccard_trab_post = calculate_dice_and_jaccard(trab_mask_post, trab_mask_reference)
eval_logger.set_field_value('dice_cort_raw', dice_cort_raw)
eval_logger.set_field_value('dice_trab_raw', dice_trab_raw)
eval_logger.set_field_value('dice_cort_post', dice_cort_post)
eval_logger.set_field_value('dice_trab_post', dice_trab_post)
eval_logger.set_field_value('jaccard_cort_raw', jaccard_cort_raw)
eval_logger.set_field_value('jaccard_trab_raw', jaccard_trab_raw)
eval_logger.set_field_value('jaccard_cort_post', jaccard_cort_post)
eval_logger.set_field_value('jaccard_trab_post', jaccard_trab_post)
ssd_cort_raw = calculate_surface_distance_measures(
cort_mask, cort_mask_reference, [args.spacing, args.spacing, args.spacing]
)
ssd_trab_raw = calculate_surface_distance_measures(
trab_mask, trab_mask_reference, [args.spacing, args.spacing, args.spacing]
)
ssd_cort_post = calculate_surface_distance_measures(
cort_mask_post, cort_mask_reference, [args.spacing, args.spacing, args.spacing]
)
ssd_trab_post = calculate_surface_distance_measures(
trab_mask_post, trab_mask_reference, [args.spacing, args.spacing, args.spacing]
)
eval_logger.set_field_value('ssd_max_cort_raw', ssd_cort_raw['max'])
eval_logger.set_field_value('ssd_max_trab_raw', ssd_trab_raw['max'])
eval_logger.set_field_value('ssd_max_cort_post', ssd_cort_post['max'])
eval_logger.set_field_value('ssd_max_trab_post', ssd_trab_post['max'])
eval_logger.set_field_value('ssd_mean_cort_raw', ssd_cort_raw['mean'])
eval_logger.set_field_value('ssd_mean_trab_raw', ssd_trab_raw['mean'])
eval_logger.set_field_value('ssd_mean_cort_post', ssd_cort_post['mean'])
eval_logger.set_field_value('ssd_mean_trab_post', ssd_trab_post['mean'])
eval_logger.log()
if args.visualize:
save_numpy_array_as_image(image_data, f'{pred_dir}{image_name}_image_data.vtk')
save_numpy_array_as_image(phi_peri, f'{pred_dir}{image_name}_embedding_periosteal.vtk')
save_numpy_array_as_image(phi_endo, f'{pred_dir}{image_name}_embedding_endosteal.vtk')
save_numpy_array_as_image(cort_mask_reference.astype(np.int),
f'{pred_dir}{image_name}_cort_mask_reference.vtk')
save_numpy_array_as_image(trab_mask_reference.astype(np.int),
f'{pred_dir}{image_name}_trab_mask_reference.vtk')
save_numpy_array_as_image(cort_mask.astype(np.int), f'{pred_dir}{image_name}_cort_mask_raw.vtk')
save_numpy_array_as_image(trab_mask.astype(np.int), f'{pred_dir}{image_name}_trab_mask_raw.vtk')
save_numpy_array_as_image(cort_mask_post.astype(np.int), f'{pred_dir}{image_name}_cort_mask_post.vtk')
save_numpy_array_as_image(trab_mask_post.astype(np.int), f'{pred_dir}{image_name}_trab_mask_post.vtk')
if args.write_aims:
save_mask_as_AIM(
f'{pred_dir}/{image_name}_CORT_MASK.AIM',
cort_mask_post,
image['image_position'],
image['image_position_original'],
image['image_shape_original'],
image['spacing'],
image['origin'],
image['processing_log'][0],
'Cortical mask',
'UNet with post-processing',
'unreleased'
)
save_mask_as_AIM(
f'{pred_dir}/{image_name}_TRAB_MASK.AIM',
trab_mask_post,
image['image_position'],
image['image_position_original'],
image['image_shape_original'],
image['spacing'],
image['origin'],
image['processing_log'][0],
'Trabecular mask',
'UNet with post-processing',
'unreleased'
)
if __name__ == '__main__':
main()