diff --git a/tests/data/parameters.json b/tests/data/parameters.json index bb571ac..82003f9 100644 --- a/tests/data/parameters.json +++ b/tests/data/parameters.json @@ -7,13 +7,16 @@ "has_apical_tuft": true, "metric": "path_distances", "modify": null, - "orientation": [ - [ - 0.0, - 1.0, - 0.0 - ] - ], + "orientation": { + "mode": "normal_pia_constraint", + "values": { + "direction": { + "mean": 0.0, + "std": 0.0 + } + } + }, + "radius": 0.3, "randomness": 0.15, "step_size": { "norm": { @@ -30,7 +33,17 @@ "growth_method": "tmd", "metric": "path_distances", "modify": null, - "orientation": null, + "orientation": { + "mode": "pia_constraint", + "values": { + "form": "step", + "params": [ + 0.44484279339093336, + 0.5461595884090537 + ] + } + }, + "radius": 0.3, "randomness": 0.15, "step_size": { "norm": { @@ -48,8 +61,8 @@ "axon": 0.6 }, "grow_types": [ - "basal_dendrite", - "apical_dendrite" + "apical_dendrite", + "basal_dendrite" ], "origin": [ 0.0, @@ -66,13 +79,16 @@ "has_apical_tuft": true, "metric": "path_distances", "modify": null, - "orientation": [ - [ - 0.0, - 1.0, - 0.0 - ] - ], + "orientation": { + "mode": "normal_pia_constraint", + "values": { + "direction": { + "mean": 0.0, + "std": 0.0 + } + } + }, + "radius": 0.3, "randomness": 0.15, "step_size": { "norm": { @@ -89,7 +105,17 @@ "growth_method": "tmd", "metric": "path_distances", "modify": null, - "orientation": null, + "orientation": { + "mode": "pia_constraint", + "values": { + "form": "step", + "params": [ + 0.44484279339093336, + 0.5461595884090537 + ] + } + }, + "radius": 0.3, "randomness": 0.15, "step_size": { "norm": { @@ -107,8 +133,8 @@ "axon": 0.6 }, "grow_types": [ - "basal_dendrite", - "apical_dendrite" + "apical_dendrite", + "basal_dendrite" ], "origin": [ 0.0, diff --git a/tests/test_context.py b/tests/test_context.py index fba48e1..640aea8 100644 --- a/tests/test_context.py +++ b/tests/test_context.py @@ -117,51 +117,47 @@ def test_context( # Synthesize in L2 result = context_worker.synthesize() - assert_array_equal(result.apical_sections, np.array([48])) + assert_array_equal(result.apical_sections, np.array([53])) assert_array_almost_equal( - result.apical_points, - np.array([[20.272340774536133, 266.1555480957031, 6.746281147003174]]), + result.apical_points, np.array([[3.35894, 203.65117, -8.5437]]), decimal=5 ) # This tests that input orientations are not mutated by the synthesize() call - assert_array_almost_equal( - synthesis_parameters.tmd_parameters["apical_dendrite"]["orientation"], [[0.0, 1.0, 0.0]] - ) + assert synthesis_parameters.tmd_parameters["apical_dendrite"]["orientation"] == { + "mode": "normal_pia_constraint", + "values": {"direction": {"mean": 0.0, "std": 0.0}}, + } assert_array_almost_equal( result.neuron.soma.points, np.array( [ - [-5.785500526428223, 4.9841227531433105, 0.0], - [-7.5740227699279785, -0.9734848141670227, 0.0], - [-1.966903805732727, -7.378671169281006, 0.0], - [3.565324068069458, -6.752922534942627, 0.0], - [7.266839027404785, -2.346604108810425, 0.0], - [7.384983062744141, 1.059786081314087, 0.0], - [6.818241119384766, 3.4387624263763428, 0.0], - [4.675901919111924e-16, 7.636327266693115, 0.0], + [-4.4719658e00, -5.5439525e00, 0.0000000e00], + [7.6192994e00, 5.0967985e-01, 0.0000000e00], + [2.7471251e00, 7.1250825e00, 0.0000000e00], + [4.6759019e-16, 7.6363273e00, 0.0000000e00], + [-5.3491087e00, 5.4498196e00, 0.0000000e00], + [-7.3899293e00, -1.5310667e00, 0.0000000e00], + [-6.1610136e00, -3.6210527e00, 0.0000000e00], ], dtype=np.float32, ), ) - assert len(result.neuron.root_sections) == 4 + assert len(result.neuron.root_sections) == 7 assert_array_almost_equal( next(result.neuron.iter()).points, np.array( [ - [-1.8836766, -3.876395, 6.3038735], - [-2.0679207, -4.2555485, 6.9204607], - [-2.2532284, -4.607763, 7.632429], - [-2.4301565, -5.4218144, 8.747698], - [-2.7331889, -6.253548, 9.650066], - [-2.960198, -6.9949017, 10.46672], + [-7.3899293, -1.5310667, -1.165452], + [-8.706363, -1.8038092, -1.3730644], + [-10.090032, -2.006144, -1.4496313], ], dtype=np.float32, ), ) assert_array_almost_equal( next(result.neuron.iter()).diameters, - np.array([0.6, 0.6, 0.6, 0.6, 0.6, 0.6], dtype=np.float32), + np.array([0.6, 0.6, 0.6], dtype=np.float32), ) def test_context_external_diametrizer( @@ -258,42 +254,37 @@ def test_scale(self, small_context_worker, tmd_parameters): result1 = small_context_worker.synthesize() expected_types = [ + SectionType.basal_dendrite, SectionType.apical_dendrite, SectionType.basal_dendrite, SectionType.basal_dendrite, SectionType.basal_dendrite, + SectionType.basal_dendrite, + SectionType.basal_dendrite, ] assert [i.type for i in result1.neuron.root_sections] == expected_types - assert_array_almost_equal( [ # Check only first and last points of neurites np.around(np.array([neu.points[0], neu.points[-1]]), 6) for neu in result1.neuron.root_sections ], [ + [[-7.38993, -1.531067, -1.165452], [-10.090032, -2.006144, -1.449631]], [ - [0.0, 7.636328220367432, 0.0], - [-0.05446799844503403, 9.565113067626953, -0.004176999907940626], - ], - [ - [-1.8836770057678223, -3.8763949871063232, 6.3038740158081055], - [-3.030216932296753, -6.87820291519165, 10.731352806091309], - ], - [ - [7.384983062744141, 1.0597859621047974, 1.6286120414733887], - [17.74557876586914, 0.2534179985523224, 3.5686450004577637], - ], - [ - [-3.335297107696533, 4.92931604385376, 4.784468173980713], - [-19.434040069580078, 27.80714988708496, 24.4342041015625], + [0.0000000e00, 7.6363282e00, 0.0000000e00], + [-1.3458900e-01, 1.0937219e01, -4.8300001e-04], ], + [[-4.471966, -5.543952, -2.753109], [-10.985586, -11.732729, -7.093396]], + [[-6.161014, -3.621053, -2.691354], [-13.246824, -8.409419, -7.309253]], + [[2.8443, 5.418238, -4.567948], [6.907934, 20.718624, -14.104201]], + [[-4.320479, 2.283079, 5.868092], [-14.584823, 10.624202, 20.95233]], + [[-1.976977, 0.131083, -7.374814], [-7.476844, -0.560946, -41.175533]], ], ) - assert_array_equal(result1.apical_sections, np.array([25])) + assert_array_equal(result1.apical_sections, np.array([29])) assert_array_almost_equal( - result1.apical_points, - np.array([[-25.359481811523438, 65.18755340576172, -6.167412757873535]]), + result1.apical_points, np.array([[5.711923, 56.423206, 4.124067]]) ) # Test with no hard limit scaling for basal @@ -310,6 +301,9 @@ def test_scale(self, small_context_worker, tmd_parameters): result2 = small_context_worker.synthesize() basal_expected_types = [ + SectionType.basal_dendrite, + SectionType.basal_dendrite, + SectionType.basal_dendrite, SectionType.basal_dendrite, SectionType.apical_dendrite, SectionType.basal_dendrite, @@ -322,22 +316,13 @@ def test_scale(self, small_context_worker, tmd_parameters): for neu in result2.neuron.root_sections ], [ - [ - [-1.8836770057678223, -3.8763949871063232, 6.3038740158081055], - [-2.4301559925079346, -5.42181396484375, 8.747697830200195], - ], - [ - [0.0, 7.636328220367432, 0.0], - [-0.17696000635623932, 10.314826011657715, 0.06906899809837341], - ], - [ - [7.384983062744141, 1.0597859621047974, 1.6286120414733887], - [13.206015586853027, 1.6560349464416504, 3.2374720573425293], - ], - [ - [-3.335297107696533, 4.92931604385376, 4.784468173980713], - [-10.385510444641113, 19.43812370300293, 19.94303321838379], - ], + [[-7.38993, -1.531067, -1.165452], [-10.090032, -2.006144, -1.449631]], + [[-4.471966, -5.543952, -2.753109], [-8.223286, -9.750789, -4.556392]], + [[-4.320479, 2.283079, 5.868092], [-7.893101, 5.56567, 11.433157]], + [[2.8443, 5.418238, -4.567948], [5.717189, 11.469478, -8.845925]], + [[0.0, 7.636328, 0.0], [-0.592816, 17.272392, 0.240599]], + [[-6.161014, -3.621053, -2.691354], [-14.194309, -7.956396, -5.834008]], + [[-1.976977, 0.131083, -7.374814], [-5.85143, 2.059288, -21.650974]], ], ) @@ -369,29 +354,23 @@ def test_scale(self, small_context_worker, tmd_parameters): for neu in result3.neuron.root_sections ], [ + [[-7.38993, -1.531067, -1.165452], [-10.090032, -2.006144, -1.449631]], [ - [0.0, 7.636328220367432, 0.0], - [-0.0517829991877079, 9.470013618469238, -0.003971000202000141], - ], - [ - [-1.8836770057678223, -3.8763949871063232, 6.3038740158081055], - [-3.030216932296753, -6.87820291519165, 10.731352806091309], - ], - [ - [7.384983062744141, 1.0597859621047974, 1.6286120414733887], - [17.74557876586914, 0.2534179985523224, 3.5686450004577637], - ], - [ - [-3.335297107696533, 4.92931604385376, 4.784468173980713], - [-19.434040069580078, 27.80714988708496, 24.4342041015625], + [0.0000000e00, 7.6363282e00, 0.0000000e00], + [-1.2766400e-01, 1.0767367e01, -4.5900000e-04], ], + [[-4.471966, -5.543952, -2.753109], [-10.985586, -11.732729, -7.093396]], + [[-6.161014, -3.621053, -2.691354], [-13.246824, -8.409419, -7.309253]], + [[2.8443, 5.418238, -4.567948], [6.907934, 20.718624, -14.104201]], + [[-4.320479, 2.283079, 5.868092], [-14.584823, 10.624202, 20.95233]], + [[-1.976977, 0.131083, -7.374814], [-7.476844, -0.560946, -41.175533]], ], ) - assert_array_equal(result3.apical_sections, np.array([25])) + assert_array_equal(result3.apical_sections, np.array([29])) assert_array_almost_equal( result3.apical_points, - np.array([[-24.10912322998047, 62.349971771240234, -5.8633270263671875]]), + np.array([[5.418009, 53.912827, 3.911858]]), ) # Test scale computation @@ -487,27 +466,6 @@ def test_debug_scales(self, small_context_worker, tmd_parameters): expected_debug_infos = { "input_scaling": { - "default_func": { - "inputs": { - "target_thickness": 300.0, - "reference_thickness": 314, - "min_target_thickness": 1.0, - }, - "scaling": [ - { - "max_ph": 126.96580088057513, - "scaling_ratio": 0.9554140127388535, - }, - { - "max_ph": 139.93140451880743, - "scaling_ratio": 0.9554140127388535, - }, - { - "max_ph": 143.28779114733433, - "scaling_ratio": 0.9554140127388535, - }, - ], - }, "target_func": { "inputs": { "fit_slope": 0.5, @@ -517,17 +475,29 @@ def test_debug_scales(self, small_context_worker, tmd_parameters): "min_target_path_distance": 1.0, }, "scaling": [ - { - "max_ph": 420.70512274498446, - "scaling_ratio": 0.18064909574697127, - } + {"max_ph": 380.2369655856533, "scaling_ratio": 0.19987535899604694} + ], + }, + "default_func": { + "inputs": { + "target_thickness": 300.0, + "reference_thickness": 314, + "min_target_thickness": 1.0, + }, + "scaling": [ + {"max_ph": 161.90961466339775, "scaling_ratio": 0.9554140127388535}, + {"max_ph": 88.93359927070985, "scaling_ratio": 0.9554140127388535}, + {"max_ph": 176.74138075182876, "scaling_ratio": 0.9554140127388535}, + {"max_ph": 143.28779114733433, "scaling_ratio": 0.9554140127388535}, + {"max_ph": 160.10899907966802, "scaling_ratio": 0.9554140127388535}, + {"max_ph": 176.74138075182876, "scaling_ratio": 0.9554140127388535}, ], }, }, "neurite_hard_limit_rescaling": { - 0: { + 19: { "neurite_type": "apical_dendrite", - "scale": 0.9506947194040978, + "scale": 0.9485438342260688, "target_min_length": 70.0, "target_max_length": 70.0, "deleted": False, @@ -593,7 +563,7 @@ def test_retry( context_worker.internals.retries = 3 result = context_worker.synthesize() - assert_array_equal(result.apical_sections, np.array([72])) + assert_array_equal(result.apical_sections, np.array([81])) assert_array_almost_equal( - result.apical_points, [[-74.1576919555664, 241.61322021484375, -26.836679458618164]] + result.apical_points, [[-109.65276, 181.05916, -94.54867]], decimal=5 )