diff --git a/base/intfuncs.jl b/base/intfuncs.jl index 6209828d239f07..67e545220c5926 100644 --- a/base/intfuncs.jl +++ b/base/intfuncs.jl @@ -1,925 +1,925 @@ -# This file is a part of Julia. License is MIT: https://julialang.org/license - -## number-theoretic functions ## - -""" - gcd(x,y) - -Greatest common (positive) divisor (or zero if `x` and `y` are both zero). -The arguments may be integer and rational numbers. - -!!! compat "Julia 1.4" - Rational arguments require Julia 1.4 or later. - -# Examples -```jldoctest -julia> gcd(6,9) -3 - -julia> gcd(6,-9) -3 -``` -""" -function gcd(a::T, b::T) where T<:Integer - while b != 0 - t = b - b = rem(a, b) - a = t - end - checked_abs(a) -end - -# binary GCD (aka Stein's) algorithm -# about 1.7x (2.1x) faster for random Int64s (Int128s) -function gcd(a::T, b::T) where T<:Union{Int8,UInt8,Int16,UInt16,Int32,UInt32,Int64,UInt64,Int128,UInt128} - a == 0 && return abs(b) - b == 0 && return abs(a) - za = trailing_zeros(a) - zb = trailing_zeros(b) - k = min(za, zb) - u = unsigned(abs(a >> za)) - v = unsigned(abs(b >> zb)) - while u != v - if u > v - u, v = v, u - end - v -= u - v >>= trailing_zeros(v) - end - r = u << k - # T(r) would throw InexactError; we want OverflowError instead - r > typemax(T) && __throw_gcd_overflow(a, b) - r % T -end -@noinline __throw_gcd_overflow(a, b) = throw(OverflowError("gcd($a, $b) overflows")) - -""" - lcm(x,y) - -Least common (non-negative) multiple. -The arguments may be integer and rational numbers. - -!!! compat "Julia 1.4" - Rational arguments require Julia 1.4 or later. - -# Examples -```jldoctest -julia> lcm(2,3) -6 - -julia> lcm(-2,3) -6 -``` -""" -function lcm(a::T, b::T) where T<:Integer - # explicit a==0 test is to handle case of lcm(0,0) correctly - if a == 0 - return a - else - return checked_abs(checked_mul(a, div(b, gcd(b,a)))) - end -end - -gcd(a::Union{Integer,Rational}) = a -lcm(a::Union{Integer,Rational}) = a -gcd(a::Real, b::Real) = gcd(promote(a,b)...) -lcm(a::Real, b::Real) = lcm(promote(a,b)...) -gcd(a::Real, b::Real, c::Real...) = gcd(a, gcd(b, c...)) -lcm(a::Real, b::Real, c::Real...) = lcm(a, lcm(b, c...)) -gcd(a::T, b::T) where T<:Real = throw(MethodError(gcd, (a,b))) -lcm(a::T, b::T) where T<:Real = throw(MethodError(lcm, (a,b))) - -gcd(abc::AbstractArray{<:Real}) = reduce(gcd, abc; init=zero(eltype(abc))) -lcm(abc::AbstractArray{<:Real}) = reduce(lcm, abc; init=one(eltype(abc))) - -function gcd(abc::AbstractArray{<:Integer}) - a = zero(eltype(abc)) - for b in abc - a = gcd(a,b) - if a == 1 - return a - end - end - return a -end - -# return (gcd(a,b),x,y) such that ax+by == gcd(a,b) -""" - gcdx(x,y) - -Computes the greatest common (positive) divisor of `x` and `y` and their Bézout -coefficients, i.e. the integer coefficients `u` and `v` that satisfy -``ux+vy = d = gcd(x,y)``. ``gcdx(x,y)`` returns ``(d,u,v)``. - -The arguments may be integer and rational numbers. - -!!! compat "Julia 1.4" - Rational arguments require Julia 1.4 or later. - -# Examples -```jldoctest -julia> gcdx(12, 42) -(6, -3, 1) - -julia> gcdx(240, 46) -(2, -9, 47) -``` - -!!! note - Bézout coefficients are *not* uniquely defined. `gcdx` returns the minimal - Bézout coefficients that are computed by the extended Euclidean algorithm. - (Ref: D. Knuth, TAoCP, 2/e, p. 325, Algorithm X.) - For signed integers, these coefficients `u` and `v` are minimal in - the sense that ``|u| < |y/d|`` and ``|v| < |x/d|``. Furthermore, - the signs of `u` and `v` are chosen so that `d` is positive. - For unsigned integers, the coefficients `u` and `v` might be near - their `typemax`, and the identity then holds only via the unsigned - integers' modulo arithmetic. -""" -function gcdx(a::T, b::T) where T<:Integer - # a0, b0 = a, b - s0, s1 = oneunit(T), zero(T) - t0, t1 = s1, s0 - # The loop invariant is: s0*a0 + t0*b0 == a - while b != 0 - q = div(a, b) - a, b = b, rem(a, b) - s0, s1 = s1, s0 - q*s1 - t0, t1 = t1, t0 - q*t1 - end - a < 0 ? (-a, -s0, -t0) : (a, s0, t0) -end -gcdx(a::Real, b::Real) = gcdx(promote(a,b)...) -gcdx(a::T, b::T) where T<:Real = throw(MethodError(gcdx, (a,b))) - -# multiplicative inverse of n mod m, error if none - -""" - invmod(x,m) - -Take the inverse of `x` modulo `m`: `y` such that ``x y = 1 \\pmod m``, -with ``div(x,y) = 0``. This is undefined for ``m = 0``, or if -``gcd(x,m) \\neq 1``. - -# Examples -```jldoctest -julia> invmod(2,5) -3 - -julia> invmod(2,3) -2 - -julia> invmod(5,6) -5 -``` -""" -function invmod(n::T, m::T) where T<:Integer - g, x, y = gcdx(n, m) - g != 1 && throw(DomainError((n, m), "Greatest common divisor is $g.")) - m == 0 && throw(DomainError(m, "`m` must not be 0.")) - # Note that m might be negative here. - # For unsigned T, x might be close to typemax; add m to force a wrap-around. - r = mod(x + m, m) - # The postcondition is: mod(r * n, m) == mod(T(1), m) && div(r, m) == 0 - r -end -invmod(n::Integer, m::Integer) = invmod(promote(n,m)...) - -# ^ for any x supporting * -to_power_type(x) = convert(Base._return_type(*, Tuple{typeof(x), typeof(x)}), x) -@noinline throw_domerr_powbysq(::Any, p) = throw(DomainError(p, - string("Cannot raise an integer x to a negative power ", p, '.', - "\nConvert input to float."))) -@noinline throw_domerr_powbysq(::Integer, p) = throw(DomainError(p, - string("Cannot raise an integer x to a negative power ", p, '.', - "\nMake x or $p a float by adding a zero decimal ", - "(e.g., 2.0^$p or 2^$(float(p)) instead of 2^$p), ", - "or write 1/x^$(-p), float(x)^$p, x^float($p) or (x//1)^$p"))) -@noinline throw_domerr_powbysq(::AbstractMatrix, p) = throw(DomainError(p, - string("Cannot raise an integer matrix x to a negative power ", p, '.', - "\nMake x a float matrix by adding a zero decimal ", - "(e.g., [2.0 1.0;1.0 0.0]^$p instead ", - "of [2 1;1 0]^$p), or write float(x)^$p or Rational.(x)^$p"))) -function power_by_squaring(x_, p::Integer) - x = to_power_type(x_) - if p == 1 - return copy(x) - elseif p == 0 - return one(x) - elseif p == 2 - return x*x - elseif p < 0 - isone(x) && return copy(x) - isone(-x) && return iseven(p) ? one(x) : copy(x) - throw_domerr_powbysq(x, p) - end - t = trailing_zeros(p) + 1 - p >>= t - while (t -= 1) > 0 - x *= x - end - y = x - while p > 0 - t = trailing_zeros(p) + 1 - p >>= t - while (t -= 1) >= 0 - x *= x - end - y *= x - end - return y -end -power_by_squaring(x::Bool, p::Unsigned) = ((p==0) | x) -function power_by_squaring(x::Bool, p::Integer) - p < 0 && !x && throw_domerr_powbysq(x, p) - return (p==0) | x -end - -^(x::T, p::T) where {T<:Integer} = power_by_squaring(x,p) -^(x::Number, p::Integer) = power_by_squaring(x,p) - -# x^p for any literal integer p is lowered to Base.literal_pow(^, x, Val(p)) -# to enable compile-time optimizations specialized to p. -# However, we still need a fallback that calls the function ^ which may either -# mean Base.^ or something else, depending on context. -# We mark these @inline since if the target is marked @inline, -# we want to make sure that gets propagated, -# even if it is over the inlining threshold. -@inline literal_pow(f, x, ::Val{p}) where {p} = f(x,p) - -# Restrict inlining to hardware-supported arithmetic types, which -# are fast enough to benefit from inlining. -const HWReal = Union{Int8,Int16,Int32,Int64,UInt8,UInt16,UInt32,UInt64,Float32,Float64} -const HWNumber = Union{HWReal, Complex{<:HWReal}, Rational{<:HWReal}} - -# Core.Compiler has complicated logic to inline x^2 and x^3 for -# numeric types. In terms of Val we can do it much more simply. -# (The first argument prevents unexpected behavior if a function ^ -# is defined that is not equal to Base.^) -@inline literal_pow(::typeof(^), x::HWNumber, ::Val{0}) = one(x) -@inline literal_pow(::typeof(^), x::HWNumber, ::Val{1}) = x -@inline literal_pow(::typeof(^), x::HWNumber, ::Val{2}) = x*x -@inline literal_pow(::typeof(^), x::HWNumber, ::Val{3}) = x*x*x - -# don't use the inv(x) transformation here since float^p is slightly more accurate -@inline literal_pow(::typeof(^), x::AbstractFloat, ::Val{p}) where {p} = x^p -@inline literal_pow(::typeof(^), x::AbstractFloat, ::Val{-1}) = inv(x) - -# for other types, define x^-n as inv(x)^n so that negative literal powers can -# be computed in a type-stable way even for e.g. integers. -@inline @generated function literal_pow(f::typeof(^), x, ::Val{p}) where {p} - if p < 0 - :(literal_pow(^, inv(x), $(Val{-p}()))) - else - :(f(x,$p)) - end -end - -# note: it is tempting to add optimized literal_pow(::typeof(^), x, ::Val{n}) -# methods here for various n, but this easily leads to method ambiguities -# if anyone has defined literal_pow(::typeof(^), x::T, ::Val). - -# b^p mod m - -""" - powermod(x::Integer, p::Integer, m) - -Compute ``x^p \\pmod m``. - -# Examples -```jldoctest -julia> powermod(2, 6, 5) -4 - -julia> mod(2^6, 5) -4 - -julia> powermod(5, 2, 20) -5 - -julia> powermod(5, 2, 19) -6 - -julia> powermod(5, 3, 19) -11 -``` -""" -function powermod(x::Integer, p::Integer, m::T) where T<:Integer - p < 0 && return powermod(invmod(x, m), -p, m) - p == 0 && return mod(one(m),m) - (m == 1 || m == -1) && return zero(m) - b = oftype(m,mod(x,m)) # this also checks for divide by zero - - t = prevpow(2, p) - r::T = 1 - while true - if p >= t - r = mod(widemul(r,b),m) - p -= t - end - t >>>= 1 - t <= 0 && break - r = mod(widemul(r,r),m) - end - return r -end - -# optimization: promote the modulus m to BigInt only once (cf. widemul in generic powermod above) -powermod(x::Integer, p::Integer, m::Union{Int128,UInt128}) = oftype(m, powermod(x, p, big(m))) - -_nextpow2(x::Unsigned) = oneunit(x)<<((sizeof(x)<<3)-leading_zeros(x-oneunit(x))) -_nextpow2(x::Integer) = reinterpret(typeof(x),x < 0 ? -_nextpow2(unsigned(-x)) : _nextpow2(unsigned(x))) -_prevpow2(x::Unsigned) = one(x) << unsigned((sizeof(x)<<3)-leading_zeros(x)-1) -_prevpow2(x::Integer) = reinterpret(typeof(x),x < 0 ? -_prevpow2(unsigned(-x)) : _prevpow2(unsigned(x))) - -""" - ispow2(n::Integer) -> Bool - -Test whether `n` is a power of two. - -# Examples -```jldoctest -julia> ispow2(4) -true - -julia> ispow2(5) -false -``` -""" -ispow2(x::Integer) = x > 0 && count_ones(x) == 1 - -""" - nextpow(a, x) - -The smallest `a^n` not less than `x`, where `n` is a non-negative integer. `a` must be -greater than 1, and `x` must be greater than 0. - -# Examples -```jldoctest -julia> nextpow(2, 7) -8 - -julia> nextpow(2, 9) -16 - -julia> nextpow(5, 20) -25 - -julia> nextpow(4, 16) -16 -``` - -See also [`prevpow`](@ref). -""" -function nextpow(a::Real, x::Real) - x <= 0 && throw(DomainError(x, "`x` must be positive.")) - # Special case fast path for x::Integer, a == 2. - # This is a very common case. Constant prop will make sure that a call site - # specified as `nextpow(2, x)` will get this special case inlined. - a == 2 && isa(x, Integer) && return _nextpow2(x) - a <= 1 && throw(DomainError(a, "`a` must be greater than 1.")) - x <= 1 && return one(a) - n = ceil(Integer,log(a, x)) - p = a^(n-1) - # guard against roundoff error, e.g., with a=5 and x=125 - p >= x ? p : a^n -end - -""" - prevpow(a, x) - -The largest `a^n` not greater than `x`, where `n` is a non-negative integer. -`a` must be greater than 1, and `x` must not be less than 1. - -# Examples -```jldoctest -julia> prevpow(2, 7) -4 - -julia> prevpow(2, 9) -8 - -julia> prevpow(5, 20) -5 - -julia> prevpow(4, 16) -16 -``` -See also [`nextpow`](@ref). -""" -function prevpow(a::Real, x::Real) - x < 1 && throw(DomainError(x, "`x` must be ≥ 1.")) - # See comment in nextpos() for a == special case. - a == 2 && isa(x, Integer) && return _prevpow2(x) - a <= 1 && throw(DomainError(a, "`a` must be greater than 1.")) - n = floor(Integer,log(a, x)) - p = a^(n+1) - p <= x ? p : a^n -end - -## ndigits (number of digits) in base 10 ## - -# decimal digits in an unsigned integer -const powers_of_ten = [ - 0x0000000000000001, 0x000000000000000a, 0x0000000000000064, 0x00000000000003e8, - 0x0000000000002710, 0x00000000000186a0, 0x00000000000f4240, 0x0000000000989680, - 0x0000000005f5e100, 0x000000003b9aca00, 0x00000002540be400, 0x000000174876e800, - 0x000000e8d4a51000, 0x000009184e72a000, 0x00005af3107a4000, 0x00038d7ea4c68000, - 0x002386f26fc10000, 0x016345785d8a0000, 0x0de0b6b3a7640000, 0x8ac7230489e80000, -] -function bit_ndigits0z(x::Base.BitUnsigned64) - lz = (sizeof(x)<<3)-leading_zeros(x) - nd = (1233*lz)>>12+1 - nd -= x < powers_of_ten[nd] -end -function bit_ndigits0z(x::UInt128) - n = 0 - while x > 0x8ac7230489e80000 - x = div(x,0x8ac7230489e80000) - n += 19 - end - return n + ndigits0z(UInt64(x)) -end - -ndigits0z(x::BitSigned) = bit_ndigits0z(unsigned(abs(x))) -ndigits0z(x::BitUnsigned) = bit_ndigits0z(x) -ndigits0z(x::Integer) = ndigits0zpb(x, 10) - -## ndigits with specified base ## - -# The suffix "nb" stands for "negative base" -function ndigits0znb(x::Integer, b::Integer) - d = 0 - if x isa Unsigned - d += (x != 0)::Bool - x = -signed(fld(x, -b)) - end - # precondition: b < -1 && !(typeof(x) <: Unsigned) - while x != 0 - x = cld(x,b) - d += 1 - end - return d -end - -# do first division before conversion with signed here, which can otherwise overflow -ndigits0znb(x::Bool, b::Integer) = x % Int - -# The suffix "pb" stands for "positive base" -function ndigits0zpb(x::Integer, b::Integer) - # precondition: b > 1 - x == 0 && return 0 - b = Int(b) - x = abs(x) - if x isa Base.BitInteger - x = unsigned(x)::Unsigned - b == 2 && return sizeof(x)<<3 - leading_zeros(x) - b == 8 && return (sizeof(x)<<3 - leading_zeros(x) + 2) ÷ 3 - b == 16 && return sizeof(x)<<1 - leading_zeros(x)>>2 - b == 10 && return bit_ndigits0z(x) - if ispow2(b) - dv, rm = divrem(sizeof(x)<<3 - leading_zeros(x), trailing_zeros(b)) - return iszero(rm) ? dv : dv + 1 - end - end - - d = 0 - while x > typemax(Int) - x = div(x,b) - d += 1 - end - x = div(x,b) - d += 1 - - m = 1 - while m <= x - m *= b - d += 1 - end - return d -end - -ndigits0zpb(x::Bool, b::Integer) = x % Int - -# The suffix "0z" means that the output is 0 on input zero (cf. #16841) -""" - ndigits0z(n::Integer, b::Integer=10) - -Return 0 if `n == 0`, otherwise compute the number of digits in -integer `n` written in base `b` (i.e. equal to `ndigits(n, base=b)` -in this case). -The base `b` must not be in `[-1, 0, 1]`. - -# Examples -```jldoctest -julia> Base.ndigits0z(0, 16) -0 - -julia> Base.ndigits(0, base=16) -1 - -julia> Base.ndigits0z(0) -0 - -julia> Base.ndigits0z(10, 2) -4 - -julia> Base.ndigits0z(10) -2 -``` - -See also [`ndigits`](@ref). -""" -function ndigits0z(x::Integer, b::Integer) - if b < -1 - ndigits0znb(x, b) - elseif b > 1 - ndigits0zpb(x, b) - else - throw(DomainError(b, "The base must not be in `[-1, 0, 1]`.")) - end -end - -""" - ndigits(n::Integer; base::Integer=10, pad::Integer=1) - -Compute the number of digits in integer `n` written in base `base` -(`base` must not be in `[-1, 0, 1]`), optionally padded with zeros -to a specified size (the result will never be less than `pad`). - -# Examples -```jldoctest -julia> ndigits(12345) -5 - -julia> ndigits(1022, base=16) -3 - -julia> string(1022, base=16) -"3fe" - -julia> ndigits(123, pad=5) -5 -``` -""" -ndigits(x::Integer; base::Integer=10, pad::Integer=1) = max(pad, ndigits0z(x, base)) - -## integer to string functions ## - -function bin(x::Unsigned, pad::Integer, neg::Bool) - i = neg + max(pad,sizeof(x)<<3-leading_zeros(x)) - a = StringVector(i) - while i > neg - @inbounds a[i] = 48+(x&0x1) - x >>= 1 - i -= 1 - end - if neg; @inbounds a[1]=0x2d; end - String(a) -end - -function oct(x::Unsigned, pad::Integer, neg::Bool) - i = neg + max(pad,div((sizeof(x)<<3)-leading_zeros(x)+2,3)) - a = StringVector(i) - while i > neg - @inbounds a[i] = 48+(x&0x7) - x >>= 3 - i -= 1 - end - if neg; @inbounds a[1]=0x2d; end - String(a) -end - -function dec(x::Unsigned, pad::Integer, neg::Bool) - i = neg + ndigits(x, base=10, pad=pad) - a = StringVector(i) - while i > neg - @inbounds a[i] = 48+rem(x,10) - x = oftype(x,div(x,10)) - i -= 1 - end - if neg; @inbounds a[1]=0x2d; end - String(a) -end - -function hex(x::Unsigned, pad::Integer, neg::Bool) - i = neg + max(pad,(sizeof(x)<<1)-(leading_zeros(x)>>2)) - a = StringVector(i) - while i > neg - d = x & 0xf - @inbounds a[i] = 48+d+39*(d>9) - x >>= 4 - i -= 1 - end - if neg; @inbounds a[1]=0x2d; end - String(a) -end - -const base36digits = ['0':'9';'a':'z'] -const base62digits = ['0':'9';'A':'Z';'a':'z'] - -function _base(b::Integer, x::Integer, pad::Integer, neg::Bool) - (x >= 0) | (b < 0) || throw(DomainError(x, "For negative `x`, `b` must be negative.")) - 2 <= abs(b) <= 62 || throw(DomainError(b, "base must satisfy 2 ≤ abs(base) ≤ 62")) - digits = abs(b) <= 36 ? base36digits : base62digits - i = neg + ndigits(x, base=b, pad=pad) - a = StringVector(i) - @inbounds while i > neg - if b > 0 - a[i] = digits[1+rem(x,b)] - x = div(x,b) - else - a[i] = digits[1+mod(x,-b)] - x = cld(x,b) - end - i -= 1 - end - if neg; a[1]='-'; end - String(a) -end - -split_sign(n::Integer) = unsigned(abs(n)), n < 0 -split_sign(n::Unsigned) = n, false - -""" - string(n::Integer; base::Integer = 10, pad::Integer = 1) - -Convert an integer `n` to a string in the given `base`, -optionally specifying a number of digits to pad to. - -```jldoctest -julia> string(5, base = 13, pad = 4) -"0005" - -julia> string(13, base = 5, pad = 4) -"0023" -``` -""" -function string(n::Integer; base::Integer = 10, pad::Integer = 1) - if base == 2 - (n_positive, neg) = split_sign(n) - bin(n_positive, pad, neg) - elseif base == 8 - (n_positive, neg) = split_sign(n) - oct(n_positive, pad, neg) - elseif base == 10 - (n_positive, neg) = split_sign(n) - dec(n_positive, pad, neg) - elseif base == 16 - (n_positive, neg) = split_sign(n) - hex(n_positive, pad, neg) - else - _base(base, base > 0 ? unsigned(abs(n)) : convert(Signed, n), pad, (base>0) & (n<0)) - end -end - -string(b::Bool) = b ? "true" : "false" - -""" - bitstring(n) - -A string giving the literal bit representation of a number. - -# Examples -```jldoctest -julia> bitstring(4) -"0000000000000000000000000000000000000000000000000000000000000100" - -julia> bitstring(2.2) -"0100000000000001100110011001100110011001100110011001100110011010" -``` -""" -function bitstring end - -bitstring(x::Union{Bool,Int8,UInt8}) = string(reinterpret(UInt8,x), pad = 8, base = 2) -bitstring(x::Union{Int16,UInt16,Float16}) = string(reinterpret(UInt16,x), pad = 16, base = 2) -bitstring(x::Union{Char,Int32,UInt32,Float32}) = string(reinterpret(UInt32,x), pad = 32, base = 2) -bitstring(x::Union{Int64,UInt64,Float64}) = string(reinterpret(UInt64,x), pad = 64, base = 2) -bitstring(x::Union{Int128,UInt128}) = string(reinterpret(UInt128,x), pad = 128, base = 2) - -""" - digits([T<:Integer], n::Integer; base::T = 10, pad::Integer = 1) - -Return an array with element type `T` (default `Int`) of the digits of `n` in the given -base, optionally padded with zeros to a specified size. More significant digits are at -higher indices, such that `n == sum([digits[k]*base^(k-1) for k=1:length(digits)])`. - -# Examples -```jldoctest -julia> digits(10, base = 10) -2-element Array{Int64,1}: - 0 - 1 - -julia> digits(10, base = 2) -4-element Array{Int64,1}: - 0 - 1 - 0 - 1 - -julia> digits(10, base = 2, pad = 6) -6-element Array{Int64,1}: - 0 - 1 - 0 - 1 - 0 - 0 -``` -""" -digits(n::Integer; base::Integer = 10, pad::Integer = 1) = - digits(typeof(base), n, base = base, pad = pad) - -function digits(T::Type{<:Integer}, n::Integer; base::Integer = 10, pad::Integer = 1) - digits!(zeros(T, ndigits(n, base=base, pad=pad)), n, base=base) -end - -""" - hastypemax(T::Type) -> Bool - -Return `true` if and only if `typemax(T)` is defined. -""" -hastypemax(::Base.BitIntegerType) = true -hastypemax(::Type{T}) where {T} = applicable(typemax, T) - -""" - digits!(array, n::Integer; base::Integer = 10) - -Fills an array of the digits of `n` in the given base. More significant digits are at higher -indices. If the array length is insufficient, the least significant digits are filled up to -the array length. If the array length is excessive, the excess portion is filled with zeros. - -# Examples -```jldoctest -julia> digits!([2,2,2,2], 10, base = 2) -4-element Array{Int64,1}: - 0 - 1 - 0 - 1 - -julia> digits!([2,2,2,2,2,2], 10, base = 2) -6-element Array{Int64,1}: - 0 - 1 - 0 - 1 - 0 - 0 -``` -""" -function digits!(a::AbstractVector{T}, n::Integer; base::Integer = 10) where T<:Integer - 2 <= abs(base) || throw(DomainError(base, "base must be ≥ 2 or ≤ -2")) - hastypemax(T) && abs(base) - 1 > typemax(T) && - throw(ArgumentError("type $T too small for base $base")) - isempty(a) && return a - - if base > 0 - if ispow2(base) && n >= 0 && n isa Base.BitInteger && base <= typemax(Int) - base = Int(base) - k = trailing_zeros(base) - c = base - 1 - for i in eachindex(a) - a[i] = (n >> (k * (i - firstindex(a)))) & c - end - else - for i in eachindex(a) - n, d = divrem(n, base) - a[i] = d - end - end - else - # manually peel one loop iteration for type stability - n, d = fldmod(n, -base) - a[firstindex(a)] = d - n = -signed(n) - for i in firstindex(a)+1:lastindex(a) - n, d = fldmod(n, -base) - a[i] = d - n = -n - end - end - return a -end - -""" - isqrt(n::Integer) - -Integer square root: the largest integer `m` such that `m*m <= n`. - -```jldoctest -julia> isqrt(5) -2 -``` -""" -isqrt(x::Integer) = oftype(x, trunc(sqrt(x))) - -function isqrt(x::Union{Int64,UInt64,Int128,UInt128}) - x==0 && return x - s = oftype(x, trunc(sqrt(x))) - # fix with a Newton iteration, since conversion to float discards - # too many bits. - s = (s + div(x,s)) >> 1 - s*s > x ? s-1 : s -end - -""" - factorial(n::Integer) - -Factorial of `n`. If `n` is an [`Integer`](@ref), the factorial is computed as an -integer (promoted to at least 64 bits). Note that this may overflow if `n` is not small, -but you can use `factorial(big(n))` to compute the result exactly in arbitrary precision. - -# Examples -```jldoctest -julia> factorial(6) -720 - -julia> factorial(21) -ERROR: OverflowError: 21 is too large to look up in the table; consider using `factorial(big(21))` instead -Stacktrace: -[...] - -julia> factorial(big(21)) -51090942171709440000 -``` - -# See also -* [`binomial`](@ref) - -# External links -* [Factorial](https://en.wikipedia.org/wiki/Factorial) on Wikipedia. -""" -function factorial(n::Integer) - n < 0 && throw(DomainError(n, "`n` must be nonnegative.")) - f::typeof(n*n) = 1 - for i::typeof(n*n) = 2:n - f *= i - end - return f -end - -""" - binomial(n::Integer, k::Integer) - -The _binomial coefficient_ ``\\binom{n}{k}``, being the coefficient of the ``k``th term in -the polynomial expansion of ``(1+x)^n``. - -If ``n`` is non-negative, then it is the number of ways to choose `k` out of `n` items: -```math -\\binom{n}{k} = \\frac{n!}{k! (n-k)!} -``` -where ``n!`` is the [`factorial`](@ref) function. - -If ``n`` is negative, then it is defined in terms of the identity -```math -\\binom{n}{k} = (-1)^k \\binom{k-n-1}{k} -``` - -# Examples -```jldoctest -julia> binomial(5, 3) -10 - -julia> factorial(5) ÷ (factorial(5-3) * factorial(3)) -10 - -julia> binomial(-5, 3) --35 -``` - -# See also -* [`factorial`](@ref) - -# External links -* [Binomial coefficient](https://en.wikipedia.org/wiki/Binomial_coefficient) on Wikipedia. -""" -function binomial(n::T, k::T) where T<:Integer - n0, k0 = n, k - k < 0 && return zero(T) - sgn = one(T) - if n < 0 - n = -n + k -1 - if isodd(k) - sgn = -sgn - end - end - k > n && return zero(T) - (k == 0 || k == n) && return sgn - k == 1 && return sgn*n - if k > (n>>1) - k = (n - k) - end - x::T = nn = n - k + 1 - nn += 1 - rr = 2 - while rr <= k - xt = div(widemul(x, nn), rr) - x = xt % T - x == xt || throw(OverflowError("binomial($n0, $k0) overflows")) - rr += 1 - nn += 1 - end - convert(T, copysign(x, sgn)) -end +# This file is a part of Julia. License is MIT: https://julialang.org/license + +## number-theoretic functions ## + +""" + gcd(x,y) + +Greatest common (positive) divisor (or zero if `x` and `y` are both zero). +The arguments may be integer and rational numbers. + +!!! compat "Julia 1.4" + Rational arguments require Julia 1.4 or later. + +# Examples +```jldoctest +julia> gcd(6,9) +3 + +julia> gcd(6,-9) +3 +``` +""" +function gcd(a::T, b::T) where T<:Integer + while b != 0 + t = b + b = rem(a, b) + a = t + end + checked_abs(a) +end + +# binary GCD (aka Stein's) algorithm +# about 1.7x (2.1x) faster for random Int64s (Int128s) +function gcd(a::T, b::T) where T<:Union{Int8,UInt8,Int16,UInt16,Int32,UInt32,Int64,UInt64,Int128,UInt128} + a == 0 && return abs(b) + b == 0 && return abs(a) + za = trailing_zeros(a) + zb = trailing_zeros(b) + k = min(za, zb) + u = unsigned(abs(a >> za)) + v = unsigned(abs(b >> zb)) + while u != v + if u > v + u, v = v, u + end + v -= u + v >>= trailing_zeros(v) + end + r = u << k + # T(r) would throw InexactError; we want OverflowError instead + r > typemax(T) && __throw_gcd_overflow(a, b) + r % T +end +@noinline __throw_gcd_overflow(a, b) = throw(OverflowError("gcd($a, $b) overflows")) + +""" + lcm(x,y) + +Least common (non-negative) multiple. +The arguments may be integer and rational numbers. + +!!! compat "Julia 1.4" + Rational arguments require Julia 1.4 or later. + +# Examples +```jldoctest +julia> lcm(2,3) +6 + +julia> lcm(-2,3) +6 +``` +""" +function lcm(a::T, b::T) where T<:Integer + # explicit a==0 test is to handle case of lcm(0,0) correctly + if a == 0 + return a + else + return checked_abs(checked_mul(a, div(b, gcd(b,a)))) + end +end + +gcd(a::Union{Integer,Rational}) = a +lcm(a::Union{Integer,Rational}) = a +gcd(a::Real, b::Real) = gcd(promote(a,b)...) +lcm(a::Real, b::Real) = lcm(promote(a,b)...) +gcd(a::Real, b::Real, c::Real...) = gcd(a, gcd(b, c...)) +lcm(a::Real, b::Real, c::Real...) = lcm(a, lcm(b, c...)) +gcd(a::T, b::T) where T<:Real = throw(MethodError(gcd, (a,b))) +lcm(a::T, b::T) where T<:Real = throw(MethodError(lcm, (a,b))) + +gcd(abc::AbstractArray{<:Real}) = reduce(gcd, abc; init=zero(eltype(abc))) +lcm(abc::AbstractArray{<:Real}) = reduce(lcm, abc; init=one(eltype(abc))) + +function gcd(abc::AbstractArray{<:Integer}) + a = zero(eltype(abc)) + for b in abc + a = gcd(a,b) + if a == 1 + return a + end + end + return a +end + +# return (gcd(a,b),x,y) such that ax+by == gcd(a,b) +""" + gcdx(x,y) + +Computes the greatest common (positive) divisor of `x` and `y` and their Bézout +coefficients, i.e. the integer coefficients `u` and `v` that satisfy +``ux+vy = d = gcd(x,y)``. ``gcdx(x,y)`` returns ``(d,u,v)``. + +The arguments may be integer and rational numbers. + +!!! compat "Julia 1.4" + Rational arguments require Julia 1.4 or later. + +# Examples +```jldoctest +julia> gcdx(12, 42) +(6, -3, 1) + +julia> gcdx(240, 46) +(2, -9, 47) +``` + +!!! note + Bézout coefficients are *not* uniquely defined. `gcdx` returns the minimal + Bézout coefficients that are computed by the extended Euclidean algorithm. + (Ref: D. Knuth, TAoCP, 2/e, p. 325, Algorithm X.) + For signed integers, these coefficients `u` and `v` are minimal in + the sense that ``|u| < |y/d|`` and ``|v| < |x/d|``. Furthermore, + the signs of `u` and `v` are chosen so that `d` is positive. + For unsigned integers, the coefficients `u` and `v` might be near + their `typemax`, and the identity then holds only via the unsigned + integers' modulo arithmetic. +""" +function gcdx(a::T, b::T) where T<:Integer + # a0, b0 = a, b + s0, s1 = oneunit(T), zero(T) + t0, t1 = s1, s0 + # The loop invariant is: s0*a0 + t0*b0 == a + while b != 0 + q = div(a, b) + a, b = b, rem(a, b) + s0, s1 = s1, s0 - q*s1 + t0, t1 = t1, t0 - q*t1 + end + a < 0 ? (-a, -s0, -t0) : (a, s0, t0) +end +gcdx(a::Real, b::Real) = gcdx(promote(a,b)...) +gcdx(a::T, b::T) where T<:Real = throw(MethodError(gcdx, (a,b))) + +# multiplicative inverse of n mod m, error if none + +""" + invmod(x,m) + +Take the inverse of `x` modulo `m`: `y` such that ``x y = 1 \\pmod m``, +with ``div(x,y) = 0``. This is undefined for ``m = 0``, or if +``gcd(x,m) \\neq 1``. + +# Examples +```jldoctest +julia> invmod(2,5) +3 + +julia> invmod(2,3) +2 + +julia> invmod(5,6) +5 +``` +""" +function invmod(n::T, m::T) where T<:Integer + g, x, y = gcdx(n, m) + g != 1 && throw(DomainError((n, m), "Greatest common divisor is $g.")) + m == 0 && throw(DomainError(m, "`m` must not be 0.")) + # Note that m might be negative here. + # For unsigned T, x might be close to typemax; add m to force a wrap-around. + r = mod(x + m, m) + # The postcondition is: mod(r * n, m) == mod(T(1), m) && div(r, m) == 0 + r +end +invmod(n::Integer, m::Integer) = invmod(promote(n,m)...) + +# ^ for any x supporting * +to_power_type(x) = convert(Base._return_type(*, Tuple{typeof(x), typeof(x)}), x) +@noinline throw_domerr_powbysq(::Any, p) = throw(DomainError(p, + string("Cannot raise an integer x to a negative power ", p, '.', + "\nConvert input to float."))) +@noinline throw_domerr_powbysq(::Integer, p) = throw(DomainError(p, + string("Cannot raise an integer x to a negative power ", p, '.', + "\nMake x or $p a float by adding a zero decimal ", + "(e.g., 2.0^$p or 2^$(float(p)) instead of 2^$p), ", + "or write 1/x^$(-p), float(x)^$p, x^float($p) or (x//1)^$p"))) +@noinline throw_domerr_powbysq(::AbstractMatrix, p) = throw(DomainError(p, + string("Cannot raise an integer matrix x to a negative power ", p, '.', + "\nMake x a float matrix by adding a zero decimal ", + "(e.g., [2.0 1.0;1.0 0.0]^$p instead ", + "of [2 1;1 0]^$p), or write float(x)^$p or Rational.(x)^$p"))) +function power_by_squaring(x_, p::Integer) + x = to_power_type(x_) + if p == 1 + return copy(x) + elseif p == 0 + return one(x) + elseif p == 2 + return x*x + elseif p < 0 + isone(x) && return copy(x) + isone(-x) && return iseven(p) ? one(x) : copy(x) + throw_domerr_powbysq(x, p) + end + t = trailing_zeros(p) + 1 + p >>= t + while (t -= 1) > 0 + x *= x + end + y = x + while p > 0 + t = trailing_zeros(p) + 1 + p >>= t + while (t -= 1) >= 0 + x *= x + end + y *= x + end + return y +end +power_by_squaring(x::Bool, p::Unsigned) = ((p==0) | x) +function power_by_squaring(x::Bool, p::Integer) + p < 0 && !x && throw_domerr_powbysq(x, p) + return (p==0) | x +end + +^(x::T, p::T) where {T<:Integer} = power_by_squaring(x,p) +^(x::Number, p::Integer) = power_by_squaring(x,p) + +# x^p for any literal integer p is lowered to Base.literal_pow(^, x, Val(p)) +# to enable compile-time optimizations specialized to p. +# However, we still need a fallback that calls the function ^ which may either +# mean Base.^ or something else, depending on context. +# We mark these @inline since if the target is marked @inline, +# we want to make sure that gets propagated, +# even if it is over the inlining threshold. +@inline literal_pow(f, x, ::Val{p}) where {p} = f(x,p) + +# Restrict inlining to hardware-supported arithmetic types, which +# are fast enough to benefit from inlining. +const HWReal = Union{Int8,Int16,Int32,Int64,UInt8,UInt16,UInt32,UInt64,Float32,Float64} +const HWNumber = Union{HWReal, Complex{<:HWReal}, Rational{<:HWReal}} + +# Core.Compiler has complicated logic to inline x^2 and x^3 for +# numeric types. In terms of Val we can do it much more simply. +# (The first argument prevents unexpected behavior if a function ^ +# is defined that is not equal to Base.^) +@inline literal_pow(::typeof(^), x::HWNumber, ::Val{0}) = one(x) +@inline literal_pow(::typeof(^), x::HWNumber, ::Val{1}) = x +@inline literal_pow(::typeof(^), x::HWNumber, ::Val{2}) = x*x +@inline literal_pow(::typeof(^), x::HWNumber, ::Val{3}) = x*x*x + +# don't use the inv(x) transformation here since float^p is slightly more accurate +@inline literal_pow(::typeof(^), x::AbstractFloat, ::Val{p}) where {p} = x^p +@inline literal_pow(::typeof(^), x::AbstractFloat, ::Val{-1}) = inv(x) + +# for other types, define x^-n as inv(x)^n so that negative literal powers can +# be computed in a type-stable way even for e.g. integers. +@inline @generated function literal_pow(f::typeof(^), x, ::Val{p}) where {p} + if p < 0 + :(literal_pow(^, inv(x), $(Val{-p}()))) + else + :(f(x,$p)) + end +end + +# note: it is tempting to add optimized literal_pow(::typeof(^), x, ::Val{n}) +# methods here for various n, but this easily leads to method ambiguities +# if anyone has defined literal_pow(::typeof(^), x::T, ::Val). + +# b^p mod m + +""" + powermod(x::Integer, p::Integer, m) + +Compute ``x^p \\pmod m``. + +# Examples +```jldoctest +julia> powermod(2, 6, 5) +4 + +julia> mod(2^6, 5) +4 + +julia> powermod(5, 2, 20) +5 + +julia> powermod(5, 2, 19) +6 + +julia> powermod(5, 3, 19) +11 +``` +""" +function powermod(x::Integer, p::Integer, m::T) where T<:Integer + p < 0 && return powermod(invmod(x, m), -p, m) + p == 0 && return mod(one(m),m) + (m == 1 || m == -1) && return zero(m) + b = oftype(m,mod(x,m)) # this also checks for divide by zero + + t = prevpow(2, p) + r::T = 1 + while true + if p >= t + r = mod(widemul(r,b),m) + p -= t + end + t >>>= 1 + t <= 0 && break + r = mod(widemul(r,r),m) + end + return r +end + +# optimization: promote the modulus m to BigInt only once (cf. widemul in generic powermod above) +powermod(x::Integer, p::Integer, m::Union{Int128,UInt128}) = oftype(m, powermod(x, p, big(m))) + +_nextpow2(x::Unsigned) = oneunit(x)<<((sizeof(x)<<3)-leading_zeros(x-oneunit(x))) +_nextpow2(x::Integer) = reinterpret(typeof(x),x < 0 ? -_nextpow2(unsigned(-x)) : _nextpow2(unsigned(x))) +_prevpow2(x::Unsigned) = one(x) << unsigned((sizeof(x)<<3)-leading_zeros(x)-1) +_prevpow2(x::Integer) = reinterpret(typeof(x),x < 0 ? -_prevpow2(unsigned(-x)) : _prevpow2(unsigned(x))) + +""" + ispow2(n::Integer) -> Bool + +Test whether `n` is a power of two. + +# Examples +```jldoctest +julia> ispow2(4) +true + +julia> ispow2(5) +false +``` +""" +ispow2(x::Integer) = x > 0 && count_ones(x) == 1 + +""" + nextpow(a, x) + +The smallest `a^n` not less than `x`, where `n` is a non-negative integer. `a` must be +greater than 1, and `x` must be greater than 0. + +# Examples +```jldoctest +julia> nextpow(2, 7) +8 + +julia> nextpow(2, 9) +16 + +julia> nextpow(5, 20) +25 + +julia> nextpow(4, 16) +16 +``` + +See also [`prevpow`](@ref). +""" +function nextpow(a::Real, x::Real) + x <= 0 && throw(DomainError(x, "`x` must be positive.")) + # Special case fast path for x::Integer, a == 2. + # This is a very common case. Constant prop will make sure that a call site + # specified as `nextpow(2, x)` will get this special case inlined. + a == 2 && isa(x, Integer) && return _nextpow2(x) + a <= 1 && throw(DomainError(a, "`a` must be greater than 1.")) + x <= 1 && return one(a) + n = ceil(Integer,log(a, x)) + p = a^(n-1) + # guard against roundoff error, e.g., with a=5 and x=125 + p >= x ? p : a^n +end + +""" + prevpow(a, x) + +The largest `a^n` not greater than `x`, where `n` is a non-negative integer. +`a` must be greater than 1, and `x` must not be less than 1. + +# Examples +```jldoctest +julia> prevpow(2, 7) +4 + +julia> prevpow(2, 9) +8 + +julia> prevpow(5, 20) +5 + +julia> prevpow(4, 16) +16 +``` +See also [`nextpow`](@ref). +""" +function prevpow(a::Real, x::Real) + x < 1 && throw(DomainError(x, "`x` must be ≥ 1.")) + # See comment in nextpos() for a == special case. + a == 2 && isa(x, Integer) && return _prevpow2(x) + a <= 1 && throw(DomainError(a, "`a` must be greater than 1.")) + n = floor(Integer,log(a, x)) + p = a^(n+1) + p <= x ? p : a^n +end + +## ndigits (number of digits) in base 10 ## + +# decimal digits in an unsigned integer +const powers_of_ten = [ + 0x0000000000000001, 0x000000000000000a, 0x0000000000000064, 0x00000000000003e8, + 0x0000000000002710, 0x00000000000186a0, 0x00000000000f4240, 0x0000000000989680, + 0x0000000005f5e100, 0x000000003b9aca00, 0x00000002540be400, 0x000000174876e800, + 0x000000e8d4a51000, 0x000009184e72a000, 0x00005af3107a4000, 0x00038d7ea4c68000, + 0x002386f26fc10000, 0x016345785d8a0000, 0x0de0b6b3a7640000, 0x8ac7230489e80000, +] +function bit_ndigits0z(x::Base.BitUnsigned64) + lz = (sizeof(x)<<3)-leading_zeros(x) + nd = (1233*lz)>>12+1 + nd -= x < powers_of_ten[nd] +end +function bit_ndigits0z(x::UInt128) + n = 0 + while x > 0x8ac7230489e80000 + x = div(x,0x8ac7230489e80000) + n += 19 + end + return n + ndigits0z(UInt64(x)) +end + +ndigits0z(x::BitSigned) = bit_ndigits0z(unsigned(abs(x))) +ndigits0z(x::BitUnsigned) = bit_ndigits0z(x) +ndigits0z(x::Integer) = ndigits0zpb(x, 10) + +## ndigits with specified base ## + +# The suffix "nb" stands for "negative base" +function ndigits0znb(x::Integer, b::Integer) + d = 0 + if x isa Unsigned + d += (x != 0)::Bool + x = -signed(fld(x, -b)) + end + # precondition: b < -1 && !(typeof(x) <: Unsigned) + while x != 0 + x = cld(x,b) + d += 1 + end + return d +end + +# do first division before conversion with signed here, which can otherwise overflow +ndigits0znb(x::Bool, b::Integer) = x % Int + +# The suffix "pb" stands for "positive base" +function ndigits0zpb(x::Integer, b::Integer) + # precondition: b > 1 + x == 0 && return 0 + b = Int(b) + x = abs(x) + if x isa Base.BitInteger + x = unsigned(x)::Unsigned + b == 2 && return sizeof(x)<<3 - leading_zeros(x) + b == 8 && return (sizeof(x)<<3 - leading_zeros(x) + 2) ÷ 3 + b == 16 && return sizeof(x)<<1 - leading_zeros(x)>>2 + b == 10 && return bit_ndigits0z(x) + if ispow2(b) + dv, rm = divrem(sizeof(x)<<3 - leading_zeros(x), trailing_zeros(b)) + return iszero(rm) ? dv : dv + 1 + end + end + + d = 0 + while x > typemax(Int) + x = div(x,b) + d += 1 + end + x = div(x,b) + d += 1 + + m = 1 + while m <= x + m *= b + d += 1 + end + return d +end + +ndigits0zpb(x::Bool, b::Integer) = x % Int + +# The suffix "0z" means that the output is 0 on input zero (cf. #16841) +""" + ndigits0z(n::Integer, b::Integer=10) + +Return 0 if `n == 0`, otherwise compute the number of digits in +integer `n` written in base `b` (i.e. equal to `ndigits(n, base=b)` +in this case). +The base `b` must not be in `[-1, 0, 1]`. + +# Examples +```jldoctest +julia> Base.ndigits0z(0, 16) +0 + +julia> Base.ndigits(0, base=16) +1 + +julia> Base.ndigits0z(0) +0 + +julia> Base.ndigits0z(10, 2) +4 + +julia> Base.ndigits0z(10) +2 +``` + +See also [`ndigits`](@ref). +""" +function ndigits0z(x::Integer, b::Integer) + if b < -1 + ndigits0znb(x, b) + elseif b > 1 + ndigits0zpb(x, b) + else + throw(DomainError(b, "The base must not be in `[-1, 0, 1]`.")) + end +end + +""" + ndigits(n::Integer; base::Integer=10, pad::Integer=1) + +Compute the number of digits in integer `n` written in base `base` +(`base` must not be in `[-1, 0, 1]`), optionally padded with zeros +to a specified size (the result will never be less than `pad`). + +# Examples +```jldoctest +julia> ndigits(12345) +5 + +julia> ndigits(1022, base=16) +3 + +julia> string(1022, base=16) +"3fe" + +julia> ndigits(123, pad=5) +5 +``` +""" +ndigits(x::Integer; base::Integer=10, pad::Integer=1) = max(pad, ndigits0z(x, base)) + +## integer to string functions ## + +function bin(x::Unsigned, pad::Integer, neg::Bool) + i = neg + max(pad,sizeof(x)<<3-leading_zeros(x)) + a = StringVector(i) + while i > neg + @inbounds a[i] = 48+(x&0x1) + x >>= 1 + i -= 1 + end + if neg; @inbounds a[1]=0x2d; end + String(a) +end + +function oct(x::Unsigned, pad::Integer, neg::Bool) + i = neg + max(pad,div((sizeof(x)<<3)-leading_zeros(x)+2,3)) + a = StringVector(i) + while i > neg + @inbounds a[i] = 48+(x&0x7) + x >>= 3 + i -= 1 + end + if neg; @inbounds a[1]=0x2d; end + String(a) +end + +function dec(x::Unsigned, pad::Integer, neg::Bool) + i = neg + ndigits(x, base=10, pad=pad) + a = StringVector(i) + while i > neg + @inbounds a[i] = 48+rem(x,10) + x = oftype(x,div(x,10)) + i -= 1 + end + if neg; @inbounds a[1]=0x2d; end + String(a) +end + +function hex(x::Unsigned, pad::Integer, neg::Bool) + i = neg + max(pad,(sizeof(x)<<1)-(leading_zeros(x)>>2)) + a = StringVector(i) + while i > neg + d = x & 0xf + @inbounds a[i] = 48+d+39*(d>9) + x >>= 4 + i -= 1 + end + if neg; @inbounds a[1]=0x2d; end + String(a) +end + +const base36digits = ['0':'9';'a':'z'] +const base62digits = ['0':'9';'A':'Z';'a':'z'] + +function _base(b::Integer, x::Integer, pad::Integer, neg::Bool) + (x >= 0) | (b < 0) || throw(DomainError(x, "For negative `x`, `b` must be negative.")) + 2 <= abs(b) <= 62 || throw(DomainError(b, "base must satisfy 2 ≤ abs(base) ≤ 62")) + digits = abs(b) <= 36 ? base36digits : base62digits + i = neg + ndigits(x, base=b, pad=pad) + a = StringVector(i) + @inbounds while i > neg + if b > 0 + a[i] = digits[1+rem(x,b)] + x = div(x,b) + else + a[i] = digits[1+mod(x,-b)] + x = cld(x,b) + end + i -= 1 + end + if neg; a[1]='-'; end + String(a) +end + +split_sign(n::Integer) = unsigned(abs(n)), n < 0 +split_sign(n::Unsigned) = n, false + +""" + string(n::Integer; base::Integer = 10, pad::Integer = 1) + +Convert an integer `n` to a string in the given `base`, +optionally specifying a number of digits to pad to. + +```jldoctest +julia> string(5, base = 13, pad = 4) +"0005" + +julia> string(13, base = 5, pad = 4) +"0023" +``` +""" +function string(n::Integer; base::Integer = 10, pad::Integer = 1) + if base == 2 + (n_positive, neg) = split_sign(n) + bin(n_positive, pad, neg) + elseif base == 8 + (n_positive, neg) = split_sign(n) + oct(n_positive, pad, neg) + elseif base == 10 + (n_positive, neg) = split_sign(n) + dec(n_positive, pad, neg) + elseif base == 16 + (n_positive, neg) = split_sign(n) + hex(n_positive, pad, neg) + else + _base(base, base > 0 ? unsigned(abs(n)) : convert(Signed, n), pad, (base>0) & (n<0)) + end +end + +string(b::Bool) = b ? "true" : "false" + +""" + bitstring(n) + +A string giving the literal bit representation of a number. + +# Examples +```jldoctest +julia> bitstring(4) +"0000000000000000000000000000000000000000000000000000000000000100" + +julia> bitstring(2.2) +"0100000000000001100110011001100110011001100110011001100110011010" +``` +""" +function bitstring end + +bitstring(x::Union{Bool,Int8,UInt8}) = string(reinterpret(UInt8,x), pad = 8, base = 2) +bitstring(x::Union{Int16,UInt16,Float16}) = string(reinterpret(UInt16,x), pad = 16, base = 2) +bitstring(x::Union{Char,Int32,UInt32,Float32}) = string(reinterpret(UInt32,x), pad = 32, base = 2) +bitstring(x::Union{Int64,UInt64,Float64}) = string(reinterpret(UInt64,x), pad = 64, base = 2) +bitstring(x::Union{Int128,UInt128}) = string(reinterpret(UInt128,x), pad = 128, base = 2) + +""" + digits([T<:Integer], n::Integer; base::T = 10, pad::Integer = 1) + +Return an array with element type `T` (default `Int`) of the digits of `n` in the given +base, optionally padded with zeros to a specified size. More significant digits are at +higher indices, such that `n == sum([digits[k]*base^(k-1) for k=1:length(digits)])`. + +# Examples +```jldoctest +julia> digits(10, base = 10) +2-element Array{Int64,1}: + 0 + 1 + +julia> digits(10, base = 2) +4-element Array{Int64,1}: + 0 + 1 + 0 + 1 + +julia> digits(10, base = 2, pad = 6) +6-element Array{Int64,1}: + 0 + 1 + 0 + 1 + 0 + 0 +``` +""" +digits(n::Integer; base::Integer = 10, pad::Integer = 1) = + digits(typeof(base), n, base = base, pad = pad) + +function digits(T::Type{<:Integer}, n::Integer; base::Integer = 10, pad::Integer = 1) + digits!(zeros(T, ndigits(n, base=base, pad=pad)), n, base=base) +end + +""" + hastypemax(T::Type) -> Bool + +Return `true` if and only if `typemax(T)` is defined. +""" +hastypemax(::Base.BitIntegerType) = true +hastypemax(::Type{T}) where {T} = applicable(typemax, T) + +""" + digits!(array, n::Integer; base::Integer = 10) + +Fills an array of the digits of `n` in the given base. More significant digits are at higher +indices. If the array length is insufficient, the least significant digits are filled up to +the array length. If the array length is excessive, the excess portion is filled with zeros. + +# Examples +```jldoctest +julia> digits!([2,2,2,2], 10, base = 2) +4-element Array{Int64,1}: + 0 + 1 + 0 + 1 + +julia> digits!([2,2,2,2,2,2], 10, base = 2) +6-element Array{Int64,1}: + 0 + 1 + 0 + 1 + 0 + 0 +``` +""" +function digits!(a::AbstractVector{T}, n::Integer; base::Integer = 10) where T<:Integer + 2 <= abs(base) || throw(DomainError(base, "base must be ≥ 2 or ≤ -2")) + hastypemax(T) && abs(base) - 1 > typemax(T) && + throw(ArgumentError("type $T too small for base $base")) + isempty(a) && return a + + if base > 0 + if ispow2(base) && n >= 0 && n isa Base.BitInteger && base <= typemax(Int) + base = Int(base) + k = trailing_zeros(base) + c = base - 1 + for i in eachindex(a) + a[i] = (n >> (k * (i - firstindex(a)))) & c + end + else + for i in eachindex(a) + n, d = divrem(n, base) + a[i] = d + end + end + else + # manually peel one loop iteration for type stability + n, d = fldmod(n, -base) + a[firstindex(a)] = d + n = -signed(n) + for i in firstindex(a)+1:lastindex(a) + n, d = fldmod(n, -base) + a[i] = d + n = -n + end + end + return a +end + +""" + isqrt(n::Integer) + +Integer square root: the largest integer `m` such that `m*m <= n`. + +```jldoctest +julia> isqrt(5) +2 +``` +""" +isqrt(x::Integer) = oftype(x, trunc(sqrt(x))) + +function isqrt(x::Union{Int64,UInt64,Int128,UInt128}) + x==0 && return x + s = oftype(x, trunc(sqrt(x))) + # fix with a Newton iteration, since conversion to float discards + # too many bits. + s = (s + div(x,s)) >> 1 + s*s > x ? s-1 : s +end + +""" + factorial(n::Integer) + +Factorial of `n`. If `n` is an [`Integer`](@ref), the factorial is computed as an +integer (promoted to at least 64 bits). Note that this may overflow if `n` is not small, +but you can use `factorial(big(n))` to compute the result exactly in arbitrary precision. + +# Examples +```jldoctest +julia> factorial(6) +720 + +julia> factorial(21) +ERROR: OverflowError: 21 is too large to look up in the table; consider using `factorial(big(21))` instead +Stacktrace: +[...] + +julia> factorial(big(21)) +51090942171709440000 +``` + +# See also +* [`binomial`](@ref) + +# External links +* [Factorial](https://en.wikipedia.org/wiki/Factorial) on Wikipedia. +""" +function factorial(n::Integer) + n < 0 && throw(DomainError(n, "`n` must be nonnegative.")) + f::typeof(n*n) = 1 + for i::typeof(n*n) = 2:n + f *= i + end + return f +end + +""" + binomial(n::Integer, k::Integer) + +The _binomial coefficient_ ``\\binom{n}{k}``, being the coefficient of the ``k``th term in +the polynomial expansion of ``(1+x)^n``. + +If ``n`` is non-negative, then it is the number of ways to choose `k` out of `n` items: +```math +\\binom{n}{k} = \\frac{n!}{k! (n-k)!} +``` +where ``n!`` is the [`factorial`](@ref) function. + +If ``n`` is negative, then it is defined in terms of the identity +```math +\\binom{n}{k} = (-1)^k \\binom{k-n-1}{k} +``` + +# Examples +```jldoctest +julia> binomial(5, 3) +10 + +julia> factorial(5) ÷ (factorial(5-3) * factorial(3)) +10 + +julia> binomial(-5, 3) +-35 +``` + +# See also +* [`factorial`](@ref) + +# External links +* [Binomial coefficient](https://en.wikipedia.org/wiki/Binomial_coefficient) on Wikipedia. +""" +function binomial(n::T, k::T) where T<:Integer + n0, k0 = n, k + k < 0 && return zero(T) + sgn = one(T) + if n < 0 + n = -n + k -1 + if isodd(k) + sgn = -sgn + end + end + k > n && return zero(T) + (k == 0 || k == n) && return sgn + k == 1 && return sgn*n + if k > (n>>1) + k = (n - k) + end + x::T = nn = n - k + 1 + nn += 1 + rr = 2 + while rr <= k + xt = div(widemul(x, nn), rr) + x = xt % T + x == xt || throw(OverflowError("binomial($n0, $k0) overflows")) + rr += 1 + nn += 1 + end + convert(T, copysign(x, sgn)) +end