-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
464 lines (390 loc) · 25.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
import tensorflow as tf
gpus = tf.config.experimental.list_physical_devices('GPU')
if len(gpus) > 0:
tf.config.experimental.set_memory_growth(gpus[0], True)
import os
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'
os.environ['TF_MKL_REUSE_PRIMITIVE_MEMORY'] = '0'
import numpy as np
import pandas as pd
import rdkit.Chem
from molgraph import *
from dgl import batch
import sys
from argparse import ArgumentParser
import datetime
from collections import Counter
from sklearn.model_selection import KFold
from sklearn.metrics import r2_score
def kl_div_normal(mu1, mu2, sigma1, sigma2):
return tf.math.log(sigma2/sigma1) + ( ( sigma1 ** 2.0 + (mu1-mu2) ** 2.0 ) / (2 * (sigma2**2.0)) ) - 0.5
def create_input(DATA, device, args, train_molecule_molgraphs_dict=''):
data = DATA.sort_values(by=['smiles'])
smiles_counter = Counter(np.array(data.smiles))
num_mols = tf.constant([ smiles_counter[smi] for smi in sorted(smiles_counter.keys())], dtype=tf.int32)
T = tf.constant(data.temperature, dtype=tf.float32)
if train_molecule_molgraphs_dict == '':
Graphs = batch( [ dgl_molgraph_one_molecule(smi, args.maxatoms, device, args.explicitH) \
for smi in sorted(list(data.smiles.unique())) ] ).to(device)
else:
Graphs = batch( [ train_molecule_molgraphs_dict[smi] \
for smi in sorted(list(data.smiles.unique())) ] ).to(device)
seg = create_segment(args.maxatoms, list( data.total_atoms ))
try:
Y = tf.constant(data['HoV (kJ/mol)'], dtype=tf.float32)
Err = tf.constant(data.Error, dtype=tf.float32)
sample_weight = tf.constant(data.sample_weight, dtype=tf.float32)
INPUT = data, num_mols, Y, T, Graphs, seg, Err, sample_weight
except:
INPUT = data, num_mols, T, Graphs, seg
return INPUT
def create_model(args, atom_feat_dim, equation):
num_heads = args.heads
num_layers = args.layers
num_out_heads = 1
heads = ([num_heads] * num_layers) + [num_out_heads]
if args.loss[0:2] == 'kl':
from gnn import GAT_unc
model = GAT_unc(num_layers=args.layers,
in_dim=atom_feat_dim,
num_hidden=args.num_hidden,
num_classes=args.num_hidden,
heads=heads,
activation=tf.nn.relu,
feat_drop=args.dropout,
attn_drop=args.dropout,
negative_slope=0.2,
residual=args.residcon,
equation=equation)
#graph convolutional network (no attention)
'''
from gcn import GCN_unc
model = GCN_unc(num_layers=args.layers,
in_dim=atom_feat_dim,
num_hidden=args.num_hidden,
activation=tf.nn.relu)
'''
else:
from gnn import GAT
model = GAT(num_layers=args.layers,
in_dim=atom_feat_dim,
num_hidden=args.num_hidden,
num_classes=args.num_hidden,
heads=heads,
activation=tf.nn.relu,
feat_drop=args.dropout,
attn_drop=args.dropout,
negative_slope=0.2,
residual=args.residcon,
equation=equation)
print(model)
if args.modelname == '':
model_name = "_".join([ str(x) for x in [args.lr,args.batchsize,args.layers,\
args.heads,args.residcon,args.loss,args.sw_thr,args.sw_decay,args.num_hidden]])
if args.train_only:
model_name += '_trainonly'
else:
model_name = args.modelname
if not os.path.exists('results_'+equation):
os.mkdir('results_'+equation)
if not os.path.exists('results_'+equation+'/'+model_name):
os.mkdir('results_'+equation+'/'+model_name)
if not args.K_fold:
try:
model.load_model('results_'+equation+'/'+ model_name +'/my_model')
except:
pass
return model, model_name
def train_model(model, model_name, args, device, equation,\
TRAIN, VALID, TEST, train_molecule_molgraphs_dict, mu_s_NLR = []):
with tf.device(device):
weight_decay = 5e-4
train_data, num_mols_train, Y_train, T_train, Graphs_train, seg_train, Err_train, sw_train = TRAIN
if VALID != '':
valid_data, num_mols_valid, Y_valid, T_valid, Graphs_valid, seg_valid, Err_valid, sw_valid = VALID
if TEST != '':
test_data, num_mols_test, Y_test, T_test, Graphs_test, seg_test, Err_test, sw_test = TEST
optimizer = tf.keras.optimizers.Adam(learning_rate=args.lr, epsilon=1e-8)
try:
if args.train_only:
train_valid_costs = [[row['train_cost']] \
for _, row in pd.read_csv('results_'+equation+'/'+ model_name +'/costs.csv').iterrows()]
else:
train_valid_costs = [ [ row['train_cost'], row['valid_cost'] ] \
for _, row in pd.read_csv('results_'+equation+'/'+ model_name +'/costs.csv').iterrows()]
batch_costs = [row['batch_cost'] \
for _, row in pd.read_csv('results_'+equation+'/'+ model_name +'/batch_costs.csv').iterrows()]
except:
train_valid_costs = []
batch_costs = []
for epoch in range(args.epoch):
train_data_shuffled = train_data.sample(frac = 1.0, random_state = epoch)
num_batches = int(np.ceil(len(Y_train) / args.batchsize))
for _iter in range(num_batches):
data_batch = train_data_shuffled.iloc[_iter*args.batchsize:(_iter+1)*args.batchsize]
INPUT_batch = create_input(data_batch, device, args, train_molecule_molgraphs_dict)
data_batch, num_mols_batch, Y_batch, \
T_batch, train_graphs_batch, seg_train_batch, Err_batch, sw_batch = INPUT_batch
#print(np.sum([np.prod(v.get_shape()) for v in model.trainable_weights]))
with tf.GradientTape() as tape:
tape.watch(model.trainable_weights)
pred = model(train_graphs_batch.ndata['feat'], train_graphs_batch, seg_train_batch, args.maxatoms, T_batch, equation, num_mols_batch, training=True, mu_s_NLR=mu_s_NLR)
if args.loss == 'mae':
loss_value = tf.reduce_mean( tf.math.multiply( sw_batch, tf.math.abs(Y_batch-pred) ) )
elif args.loss == 'mse':
loss_value = tf.reduce_mean( tf.math.multiply( sw_batch, tf.pow((Y_batch-pred),2) ) )
elif args.loss == 'kl_div_normal':
pred_mean, pred_stddev = pred[:, 0] + 0.01, pred[:, 1] + 0.01
loss_value = tf.reduce_mean( tf.math.multiply( sw_batch, kl_div_normal( Y_batch, pred_mean, Err_batch, pred_stddev ) ) )
for weight in model.trainable_weights:
loss_value = loss_value + weight_decay * tf.nn.l2_loss(weight)
grads = tape.gradient(loss_value, model.trainable_weights)
optimizer.apply_gradients(zip(grads, model.trainable_weights))
batch_costs.append(loss_value.numpy())
##### Evaluate train/validation set
train_loss, _Y_train = evaluate(model, Graphs_train.ndata['feat'], Graphs_train, \
seg_train, args.maxatoms, T_train, equation, num_mols_train, Y_train, mu_s_NLR)
if len(_Y_train) == 2:
_Y_train, _s_train = _Y_train
print('epoch '+str(epoch)+': train MAE- '+str(train_loss.numpy()))
if not args.train_only:
valid_loss, _Y_valid = evaluate(model, Graphs_valid.ndata['feat'], Graphs_valid, \
seg_valid, args.maxatoms, T_valid, equation, num_mols_valid, Y_valid, mu_s_NLR)
if len(_Y_valid) == 2:
_Y_valid, _s_valid = _Y_valid
print('epoch '+str(epoch)+': valid MAE- '+str(valid_loss.numpy()))
if args.train_only:
train_valid_costs.append([train_loss.numpy()])
else:
train_valid_costs.append([train_loss.numpy(), valid_loss.numpy()])
if args.train_only:
pd.DataFrame(train_valid_costs).to_csv('results_'+equation+'/'+ model_name +'/costs.csv', header = ['train_cost'])
elif not args.K_fold:
pd.DataFrame(train_valid_costs).to_csv('results_'+equation+'/'+ model_name +'/costs.csv', header = ['train_cost', 'valid_cost'])
if not args.K_fold:
pd.DataFrame(batch_costs).to_csv('results_'+equation+'/'+model_name +'/batch_costs.csv', header = ['batch_cost'])
if not args.train_only:
if np.abs(min(np.array(train_valid_costs)[:, 1]) - valid_loss.numpy()) < 1.0e-4:
model.save_model('results_'+equation+'/'+ model_name +'/my_model')
result_train = np.transpose([_Y_train,np.array(Y_train),np.array(T_train)])
if args.train_only:
hov_results = pd.DataFrame(result_train, columns = ['Predicted', 'NIST', 'Temperature'])
hov_results['smiles'] = pd.DataFrame(list(train_data.smiles))
else:
print('load model with the lowest valid MAE, evaluate train,valid,test')
model.load_model('results_'+equation+'/'+ model_name +'/my_model')
train_loss, _Y_train = evaluate(model, Graphs_train.ndata['feat'], Graphs_train, \
seg_train, args.maxatoms, T_train, equation, num_mols_train, Y_train, mu_s_NLR)
valid_loss, _Y_valid = evaluate(model, Graphs_valid.ndata['feat'], Graphs_valid, \
seg_valid, args.maxatoms, T_valid, equation, num_mols_valid, Y_valid, mu_s_NLR)
test_loss, _Y_test = evaluate(model, Graphs_test.ndata['feat'], Graphs_test, \
seg_test, args.maxatoms, T_test, equation, num_mols_test, Y_test, mu_s_NLR)
if len(_Y_test) == 2:
_Y_train, _s_train = _Y_train
_Y_valid, _s_valid = _Y_valid
_Y_test, _s_test = _Y_test
print('test MAE- '+str(test_loss.numpy()) )
result_valid = np.transpose([_Y_valid,np.array(Y_valid),np.array(T_valid)])
result_test = np.transpose([_Y_test,np.array(Y_test),np.array(T_test)])
SMILES_train, SMILES_valid, SMILES_test = train_data.smiles, valid_data.smiles, test_data.smiles
hov_results = pd.DataFrame(np.concatenate((result_train, result_valid, result_test), axis=0), columns = ['Predicted', 'NIST', 'Temperature'])
hov_results['Train/Valid/Test'] = pd.DataFrame(['Train']*len(Y_train) + ['Valid']*len(Y_valid) + ['Test']*len(Y_test))
hov_results['smiles'] = pd.DataFrame(list(SMILES_train) + list(SMILES_valid) + list(SMILES_test))
if args.loss[0:2] == 'kl':
hov_results['ML_unc'] = pd.DataFrame( np.concatenate( (np.array(_s_train), np.array(_s_valid), np.array(_s_test)), axis = 0 ))
hov_results['DB_unc'] = pd.DataFrame(list(train_data.Error) + list(valid_data.Error) + list(test_data.Error) )
hov_results['sample_weight'] = pd.DataFrame(list(train_data.sample_weight) + list(valid_data.sample_weight) + list(test_data.sample_weight) )
print('------------------------------------------')
if args.train_only:
print(len(Y_train))
print ("MAE_train : ", train_loss.numpy())
return _Y_train, hov_results
else:
print(len(Y_train), len(Y_valid), len(Y_test))
print ("MAE_train : ", train_loss.numpy(), ", MAE_valid : ", valid_loss.numpy(), ", MAE_test : ", test_loss.numpy())
return _Y_train, _Y_valid, _Y_test, hov_results
def evaluate(model, features, g, segment, Max_atoms, T, equation, num_mols, Y, mu_s_NLR):
pred = model(features, g, segment, Max_atoms, T, equation, num_mols, training=False, mu_s_NLR=mu_s_NLR)
if len(pred.shape) == 2:
pred_mean, pred_stddev = pred[:, 0] + 0.01, pred[:, 1] + 0.01
loss_value = tf.reduce_mean(tf.math.abs(Y-pred_mean))
return loss_value, [pred_mean, pred_stddev]
else:
loss_value = tf.reduce_mean(tf.math.abs(Y-pred))
return loss_value, pred
def predict(model, features, g, segment, Max_atoms, T, equation, num_mols, mu_s_NLR):
if equation == 'Watson':
pred, A,B,C = model(features, g, segment, Max_atoms, T, equation, num_mols, training=False, verbose=True, mu_s_NLR=mu_s_NLR)
return pred, A,B,C
else:
pred, atom_features_each_layer, Attention_each_layer, T_part, updated_T = model(features, g, segment, Max_atoms, T, equation, num_mols, training=False, verbose=True, mu_s_NLR=mu_s_NLR)
return pred, atom_features_each_layer, Attention_each_layer, T_part, updated_T
def main():
parser = ArgumentParser()
parser.add_argument('-predict', action="store_true", default=False, help='If specified, prediction is carried out (default=False)')
parser.add_argument('-watsoneq', action='store_true', default=False, help='whether to use watson equation (default=False)')
parser.add_argument('-K_fold', action='store_true', default=False, help='whether to run KFoldCV (default=False)')
parser.add_argument('-maxatoms', type=int, default=64, help='Maximum number of atoms in a molecule (default=64)')
parser.add_argument('-lr', type=float, default=5.0e-4, help='Learning rate (default=5.0e-4)')
parser.add_argument('-epoch', type=int, default=200, help='epoch (default=200)')
parser.add_argument('-batchsize', type=int, default=256, help='batch_size (default=256)')
parser.add_argument('-layers', type=int, default=5, help='number of gnn layers (default=5)')
parser.add_argument('-heads', type=int, default=5, help='number of gat heads (default=5)')
parser.add_argument('-residcon', action="store_true", default=True, help='whether to use residual connection (default=True)')
parser.add_argument('-explicitH', action="store_true", default=False, help='whether to use explicit hydrogens (default=False)')
parser.add_argument('-dropout', type=float, default=0.0, help='dropout rate (default=0.0)')
parser.add_argument('-modelname', type=str, default='', help='model name (default=an array of hyperparameter values)')
parser.add_argument('-num_hidden', type=int, default=32, help='number of nodes in hidden layers (default=32)')
parser.add_argument('-train_only', action="store_true", default=False, help='If specified, no 8:1:1 split is carried out, the whole database is used for training (default=False)')
parser.add_argument('-loss', type=str, default='mse', help='loss function (default=mse). Options - mae, mse, kl_div_normal')
#parser.add_argument('-fraction_for_learning_curve', type=int, default=1, help='training set fraction to obtain learning curve')
# Eventually, we did not use sample weights. Using the KL divergence is better. Now deprecated
parser.add_argument('-sw_thr', type=float, default=0.0, help='Minimum uncertainty to which 1/Err sample weight is applied (default=0.0 - no sample weights)')
parser.add_argument('-sw_decay', type=int, default=1, help='Sample weight decay function (default=1 - 1/x^-1)')
args = parser.parse_args()
if args.watsoneq:
equation = 'Watson'
else:
equation = ''
if len(gpus) > 0:
device = "/gpu:0"
else:
device = "/cpu:0"
with tf.device(device):
if args.predict:
data = pd.read_csv('molecules_to_predict.csv')
mu_s_NLR = []
if args.explicitH:
data['total_atoms'] = [ len(rdkit.Chem.AddHs(rdkit.Chem.MolFromSmiles(smi)).GetAtoms()) for smi in data.smiles]
else:
data['total_atoms'] = [ rdkit.Chem.MolFromSmiles(smi).GetNumHeavyAtoms() for smi in data.smiles]
INPUT = create_input(data, device, args)
data, num_mols, T, Graphs, seg = INPUT
atom_feat_dim = Graphs.ndata['feat'].shape[-1]
model, model_name = create_model(args, atom_feat_dim, equation)
if args.watsoneq:
Predicted_HoV, A,B,C = predict(model, Graphs.ndata['feat'], Graphs, \
seg, args.maxatoms, T, equation, num_mols, mu_s_NLR)
data['predicted'] = Predicted_HoV.numpy()
data['A'] = A.numpy()
data['B'] = B.numpy()
data['C'] = C.numpy()
else:
Predicted_HoV, atom_features_each_layer, Attention_each_layer, T_part, updated_T = predict(model, Graphs.ndata['feat'], Graphs, \
seg, args.maxatoms, T, equation, num_mols, mu_s_NLR)
if len(Predicted_HoV.shape) == 2: # mean+std learning
pred_mean, pred_stddev = Predicted_HoV[:, 0], Predicted_HoV[:, 1]
data['predicted'] = pred_mean.numpy()
data['predicted_stddev'] = pred_stddev.numpy()
else:
data['predicted'] = Predicted_HoV.numpy()
#data['atom_features_each_layer'] = atom_features_each_layer
data.to_csv('molecules_to_predict_results.csv', index=False)
else: # train or K-fold
if args.K_fold:
data = pd.read_csv('data/Data_for_kfold.csv')
#data = pd.read_csv('data/Data_210903.csv')
else:
data = pd.read_csv('data/Data.csv')
#data = pd.read_csv('data/Data_211005.csv')
#data = pd.read_csv('data/HoV_lit1.csv')
#data = pd.read_csv('data/HoV_lit2.csv')
#data = pd.read_csv('data/HoV_lit3.csv')
if args.explicitH:
data = data.rename(columns={"total_num_atoms":"total_atoms"})
else:
data = data.rename(columns={"num_heavy_atoms":"total_atoms"})
if args.K_fold:
data = data[['smiles','temperature','HoV (kJ/mol)','total_atoms','Error']]
else:
data = data[['smiles','temperature','HoV (kJ/mol)','total_atoms','Error','Train/Valid/Test']]
if args.sw_thr == 0.0:
data['sample_weight'] = [ 1.0 ] * len(data)
else:
data['sample_weight'] = [ 1.0 if (x < args.sw_thr) else (1.0 / (x ** (args.sw_decay)) ) for x in data.Error ]
target_molecules = pd.Series(data.smiles.unique())
if args.train_only:
train = target_molecules.sample(frac=1.0, random_state=1)
TRAIN = create_input(data, device, args)
VALID = ''
TEST = ''
else:
if args.K_fold:
train = target_molecules.sample(frac=.8, random_state=1).sort_values()
valid = target_molecules[~target_molecules.index.isin(train.index)].sample(frac=.5, random_state=1).sort_values()
test = target_molecules[~target_molecules.index.isin(train.index) & ~target_molecules.index.isin(valid.index)].sort_values()
train_data = data.loc[data['smiles'].isin(train)]
valid_data = data.loc[data['smiles'].isin(valid)]
test_data = data.loc[data['smiles'].isin(test)]
else:
train_data, valid_data, test_data = data[ data['Train/Valid/Test'] == 'Train' ],\
data[ data['Train/Valid/Test'] == 'Valid' ],\
data[ data['Train/Valid/Test'] == 'Test' ]
# to obtain a learning curve
# 600,1200,1800, ..., 5400, 5994 (original)
#train_data = train_data[train_data.smiles.isin(train_data.smiles.unique()[:600*args.fraction_for_learning_curve])]
if args.watsoneq:
NLR_results = pd.read_csv('nonlinear_regression/reg_with_unc_results.csv')
NLR_results = NLR_results[NLR_results.smiles.isin(train_data.smiles.unique())]
NLR_results = NLR_results[ (NLR_results.logA_det > 0) & (NLR_results.C_det > 0) & (NLR_results.B_det > 0)]
logA_NLR, C_NLR, B_NLR = NLR_results['logA_det'], NLR_results['C_det'], NLR_results['B_det']
mu_s_NLR = [np.mean(logA_NLR), np.std(logA_NLR),
np.mean(B_NLR), np.std(B_NLR),
np.mean(C_NLR), np.std(C_NLR) ]
else:
mu_s_NLR = []
TRAIN, VALID, TEST = create_input(train_data, device, args), \
create_input(valid_data, device, args), \
create_input(test_data, device, args)
if args.K_fold:
r2 = []
kfold = KFold(n_splits=10, shuffle = True, random_state = 1)
molecules_for_KFold = pd.concat([train,valid]).sort_values()
fold_count = 0
for train_index, valid_index in list(kfold.split(molecules_for_KFold)) :
print('Fold Count ',fold_count)
train = molecules_for_KFold.iloc[train_index]
valid = molecules_for_KFold.iloc[valid_index]
train_data = data.loc[data['smiles'].isin(train)]
valid_data = data.loc[data['smiles'].isin(valid)]
if args.watsoneq:
NLR_results = pd.read_csv('nonlinear_regression/reg_with_unc_results.csv')
NLR_results = NLR_results[NLR_results.smiles.isin(train_data.smiles.unique())]
NLR_results = NLR_results[ (NLR_results.logA_det > 0) & (NLR_results.C_det > 0) & (NLR_results.B_det > 0)]
logA_NLR, C_NLR, B_NLR = NLR_results['logA_det'], NLR_results['C_det'], NLR_results['B_det']
mu_s_NLR = [np.mean(logA_NLR), np.std(logA_NLR),
np.mean(B_NLR), np.std(B_NLR),
np.mean(C_NLR), np.std(C_NLR) ]
print(mu_s_NLR)
else:
mu_s_NLR = []
TRAIN = create_input(train_data, device, args)
VALID = create_input(valid_data, device, args)
TEST = create_input(test_data, device, args)
train_molecule_molgraphs_dict = {} # for finding molgraphs after the batch being shuffled
for smi in sorted(list(train_data.smiles.unique())):
one_mol_graph = dgl_molgraph_one_molecule(smi, args.maxatoms, device, args.explicitH)
train_molecule_molgraphs_dict[smi] = one_mol_graph
atom_feat_dim = VALID[-4].ndata['feat'].shape[-1] # -4: molgraphs
model, model_name = create_model(args, atom_feat_dim, equation)
_Y_train, _Y_valid, _Y_test, hov_results = train_model( model, model_name, args, device, equation, TRAIN, VALID, TEST,train_molecule_molgraphs_dict, mu_s_NLR )
pd.DataFrame(hov_results).to_csv('results_'+equation+'/' +model_name+ '/HoV_results'+ str(fold_count) +'.csv')
os.system('mkdir '+'results_'+equation+'/' +model_name+ '/model'+str(fold_count))
os.system('mv '+'results_'+equation+'/' +model_name+ '/my_model* '+ 'results_'+equation+'/' +model_name+ '/model'+str(fold_count)+'/.' )
os.system('mv '+'results_'+equation+'/' +model_name+ '/checkpoint '+ 'results_'+equation+'/' +model_name+ '/model'+str(fold_count)+'/.' )
Y_valid = VALID[2]
r1 = r2_score(list(_Y_valid), list(Y_valid))
r2.append(r1)
fold_count += 1
else:
train_molecule_molgraphs_dict = {}
train = pd.Series(train_data.smiles.unique())
for smi in train:
one_mol_graph = dgl_molgraph_one_molecule(smi, args.maxatoms, device, args.explicitH)
train_molecule_molgraphs_dict[smi] = one_mol_graph
atom_feat_dim = TRAIN[-4].ndata['feat'].shape[-1] # -4: molgraphs
model, model_name = create_model(args, atom_feat_dim, equation)
_Y_train, _Y_valid, _Y_test, hov_results = train_model( model, model_name, args, device, equation, TRAIN, VALID, TEST, train_molecule_molgraphs_dict, mu_s_NLR )
pd.DataFrame(hov_results).to_csv('results_'+equation+'/' +model_name+ '/HoV_results.csv')
if __name__ == '__main__':
main()