-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathencode_array_into_sh.py
102 lines (91 loc) · 2.64 KB
/
encode_array_into_sh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import h5py
import numpy as np
import spaudiopy
import matplotlib.pyplot as plt
import scipy.signal
ARRAY_IR_FILE_PATH = "origin_array_tf_data/Device_ATFs.h5"
FS = 32000
f = h5py.File(ARRAY_IR_FILE_PATH, "r")
# load impulse responses
fs = int(list(f["SamplingFreq_Hz"])[0][0])
# resample to FS
ir = scipy.signal.resample_poly(
np.array(f["IR"])[:, :, [0, 1, 2, 4, 5]], FS, fs)
zenith = np.array(f["Theta"]) # zenith angle in radians [1 x nDirection]
zenith = zenith[0, :]
azi = np.array(f["Phi"]) # azimuth in radians [1 x nDirection]
azi = azi[0, :]
azi[azi > np.pi] = azi[azi > np.pi] - 2 * np.pi
INTERP_ORDER = 25
weights = np.diag(np.sin(zenith))
Y_gr = spaudiopy.sph.sh_matrix(INTERP_ORDER, azi, zenith, "real")
# encoding matrix with area weights (sin(zenith)) and regularization by diagonal loading
REGUL_DIAG_LOAD = 0.1
e = np.linalg.eigvalsh(Y_gr.T @ weights @ Y_gr)
Y_gr_pinv = (
np.linalg.inv(
Y_gr.T @ weights @ Y_gr +
np.max(e) * REGUL_DIAG_LOAD * np.eye(Y_gr.shape[1])
)
@ Y_gr.T @ weights
)
hoa_array = Y_gr_pinv @ ir
# decode and compare (change to True and adjust frequency range to view)
if False:
FMIN_BANDPASS = 10000
FMAX_BANDPASS = 12000
TRUNC_ORDER = 25
gr = spaudiopy.grids.load_n_design(56)
azigr, zengr, _ = spaudiopy.utils.cart2sph(gr[:, 0], gr[:, 1], gr[:, 2])
shmat = spaudiopy.sph.sh_matrix(TRUNC_ORDER, azigr, zengr, "real")
MIC = 1
b, a = scipy.signal.butter(
2, (FMIN_BANDPASS, FMAX_BANDPASS), "bandpass", fs=FS)
VMIN = -60
VMAX = -30
plt.subplot(211, projection="mollweide")
plt.scatter(
azigr,
np.pi / 2 - zengr,
s=10,
c=10
* np.log10(
np.mean(
scipy.signal.lfilter(
b,
a,
(
shmat[:, : (TRUNC_ORDER + 1) ** 2]
@ hoa_array[:, : (TRUNC_ORDER + 1) ** 2, :]
)[:, :, MIC],
axis=0,
)
** 2,
axis=0,
)
),
vmin=VMIN,
vmax=VMAX,
)
plt.title("resampled")
plt.colorbar()
plt.grid(True)
plt.subplot(212, projection="mollweide")
plt.scatter(
azi,
np.pi / 2 - zenith,
s=10,
c=10
* np.log10(
np.mean(scipy.signal.lfilter(
b, a, ir[:, :, MIC], axis=0) ** 2, axis=0)
),
vmin=VMIN,
vmax=VMAX,
)
plt.title("sampled")
plt.colorbar()
plt.grid(True)
plt.show()
np.save("Easycom_array_%dHz_o%d_22samps_delay.npy" %
(FS, INTERP_ORDER), hoa_array)