-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathQANet_main.py
376 lines (347 loc) · 11 KB
/
QANet_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
# -*- coding: utf-8 -*-
"""
Main file for training SQuAD reading comprehension model.
"""
import os
import sys
import argparse
import math
import random
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
from datetime import datetime
from data_loader.SQuAD import prepro, get_loader
from model.QANet import QANet
from trainer.QANet_trainer import Trainer
from util.visualize import Visualizer
from model.modules.ema import EMA
from util.file_utils import pickle_load_large_file
data_folder = "../../../datasets/"
parser = argparse.ArgumentParser(description='Lucy')
# dataset
parser.add_argument(
'--processed_data',
default=False, action='store_true',
help='whether the dataset already processed')
parser.add_argument(
'--train_file',
default=data_folder + 'original/SQuAD/train-v1.1.json',
type=str, help='path of train dataset')
parser.add_argument(
'--dev_file',
default=data_folder + 'original/SQuAD/dev-v1.1.json',
type=str, help='path of dev dataset')
parser.add_argument(
'--train_examples_file',
default=data_folder + 'processed/SQuAD/train-v1.1-examples.pkl',
type=str, help='path of train dataset examples file')
parser.add_argument(
'--dev_examples_file',
default=data_folder + 'processed/SQuAD/dev-v1.1-examples.pkl',
type=str, help='path of dev dataset examples file')
parser.add_argument(
'--train_meta_file',
default=data_folder + 'processed/SQuAD/train-v1.1-meta.pkl',
type=str, help='path of train dataset meta file')
parser.add_argument(
'--dev_meta_file',
default=data_folder + 'processed/SQuAD/dev-v1.1-meta.pkl',
type=str, help='path of dev dataset meta file')
parser.add_argument(
'--train_eval_file',
default=data_folder + 'processed/SQuAD/train-v1.1-eval.pkl',
type=str, help='path of train dataset eval file')
parser.add_argument(
'--dev_eval_file',
default=data_folder + 'processed/SQuAD/dev-v1.1-eval.pkl',
type=str, help='path of dev dataset eval file')
parser.add_argument(
'--val_num_batches',
default=500, type=int,
help='number of batches for evaluation (default: 500)')
# embedding
parser.add_argument(
'--glove_word_file',
default=data_folder + 'original/Glove/glove.840B.300d.txt',
type=str, help='path of word embedding file')
parser.add_argument(
'--glove_word_size',
default=int(2.2e6), type=int,
help='Corpus size for Glove')
parser.add_argument(
'--glove_dim',
default=300, type=int,
help='word embedding size (default: 300)')
parser.add_argument(
'--word_emb_file',
default=data_folder + 'processed/SQuAD/word_emb.pkl',
type=str, help='path of word embedding matrix file')
parser.add_argument(
'--word_dictionary',
default=data_folder + 'processed/SQuAD/word_dict.pkl',
type=str, help='path of word embedding dict file')
parser.add_argument(
'--pretrained_char',
default=False, action='store_true',
help='whether train char embedding or not')
parser.add_argument(
'--glove_char_file',
default=data_folder + "original/Glove/glove.840B.300d-char.txt",
type=str, help='path of char embedding file')
parser.add_argument(
'--glove_char_size',
default=94, type=int,
help='Corpus size for char embedding')
parser.add_argument(
'--char_dim',
default=64, type=int,
help='char embedding size (default: 64)')
parser.add_argument(
'--char_emb_file',
default=data_folder + 'processed/SQuAD/char_emb.pkl',
type=str, help='path of char embedding matrix file')
parser.add_argument(
'--char_dictionary',
default=data_folder + 'processed/SQuAD/char_dict.pkl',
type=str, help='path of char embedding dict file')
# train
parser.add_argument(
'-b', '--batch_size',
default=32, type=int,
help='mini-batch size (default: 32)')
parser.add_argument(
'-e', '--epochs',
default=30, type=int,
help='number of total epochs (default: 30)')
# debug
parser.add_argument(
'--debug',
default=False, action='store_true',
help='debug mode or not')
parser.add_argument(
'--debug_batchnum',
default=2, type=int,
help='only train and test a few batches when debug (devault: 2)')
# checkpoint
parser.add_argument(
'--resume',
default='', type=str,
help='path to latest checkpoint (default: none)')
parser.add_argument(
'--verbosity',
default=2, type=int,
help='verbosity, 0: quiet, 1: per epoch, 2: complete (default: 2)')
parser.add_argument(
'--save_dir',
default='checkpoints/', type=str,
help='directory of saved model (default: checkpoints/)')
parser.add_argument(
'--save_freq',
default=1, type=int,
help='training checkpoint frequency (default: 1 epoch)')
parser.add_argument(
'--print_freq',
default=10, type=int,
help='print training information frequency (default: 10 steps)')
# cuda
parser.add_argument(
'--with_cuda',
default=False, action='store_true',
help='use CPU in case there\'s no GPU support')
parser.add_argument(
'--multi_gpu',
default=False, action='store_true',
help='use multi-GPU in case there\'s multiple GPUs available')
# log & visualize
parser.add_argument(
'--visualizer',
default=False, action='store_true',
help='use visdom visualizer or not')
parser.add_argument(
'--log_file',
default='log.txt',
type=str, help='path of log file')
# optimizer & scheduler & weight & exponential moving average
parser.add_argument(
'--lr',
default=0.001, type=float,
help='learning rate')
parser.add_argument(
'--lr_warm_up_num',
default=1000, type=int,
help='number of warm-up steps of learning rate')
parser.add_argument(
'--beta1',
default=0.8, type=float,
help='beta 1')
parser.add_argument(
'--beta2',
default=0.999, type=float,
help='beta 2')
parser.add_argument(
'--decay',
default=0.9999, type=float,
help='exponential moving average decay')
parser.add_argument(
'--use_scheduler',
default=True, action='store_false',
help='whether use learning rate scheduler')
parser.add_argument(
'--use_grad_clip',
default=True, action='store_false',
help='whether use gradient clip')
parser.add_argument(
'--grad_clip',
default=5.0, type=float,
help='global Norm gradient clipping rate')
parser.add_argument(
'--use_ema',
default=False, action='store_true',
help='whether use exponential moving average')
parser.add_argument(
'--use_early_stop',
default=True, action='store_false',
help='whether use early stop')
parser.add_argument(
'--early_stop',
default=10, type=int,
help='checkpoints for early stop')
# model
parser.add_argument(
'--para_limit',
default=400, type=int,
help='maximum context token number')
parser.add_argument(
'--ques_limit',
default=50, type=int,
help='maximum question token number')
parser.add_argument(
'--ans_limit',
default=30, type=int,
help='maximum answer token number')
parser.add_argument(
'--char_limit',
default=16, type=int,
help='maximum char number in a word')
parser.add_argument(
'--d_model',
default=128, type=int,
help='model hidden size')
parser.add_argument(
'--num_head',
default=8, type=int,
help='attention num head')
def main(args):
# show configuration
print(args)
random_seed = None
if random_seed is not None:
random.seed(random_seed)
np.random.seed(random_seed)
torch.manual_seed(random_seed)
# set log file
log = sys.stdout
if args.log_file is not None:
log = open(args.log_file, "a")
# set device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
if torch.cuda.is_available():
print("device is cuda, # cuda is: ", n_gpu)
else:
print("device is cpu")
# process word vectors and datasets
if not args.processed_data:
prepro(args)
# load word vectors and datasets
wv_tensor = torch.FloatTensor(
np.array(pickle_load_large_file(args.word_emb_file), dtype=np.float32))
cv_tensor = torch.FloatTensor(
np.array(pickle_load_large_file(args.char_emb_file), dtype=np.float32))
wv_word2ix = pickle_load_large_file(args.word_dictionary)
train_dataloader = get_loader(
args.train_examples_file, args.batch_size, shuffle=True)
dev_dataloader = get_loader(
args.dev_examples_file, args.batch_size, shuffle=True)
# construct model
model = QANet(
wv_tensor,
cv_tensor,
args.para_limit,
args.ques_limit,
args.d_model,
num_head=args.num_head,
train_cemb=(not args.pretrained_char),
pad=wv_word2ix["<PAD>"])
model.summary()
if torch.cuda.device_count() > 1 and args.multi_gpu:
model = nn.DataParallel(model)
model.to(device)
# exponential moving average
ema = EMA(args.decay)
if args.use_ema:
for name, param in model.named_parameters():
if param.requires_grad:
ema.register(name, param.data)
# set optimizer and scheduler
parameters = filter(lambda p: p.requires_grad, model.parameters())
optimizer = optim.Adam(
params=parameters,
lr=args.lr,
betas=(args.beta1, args.beta2),
eps=1e-8,
weight_decay=3e-7)
cr = 1.0 / math.log(args.lr_warm_up_num)
scheduler = optim.lr_scheduler.LambdaLR(
optimizer,
lr_lambda=lambda ee: cr * math.log(ee + 1)
if ee < args.lr_warm_up_num else 1)
# set loss, metrics
loss = torch.nn.CrossEntropyLoss()
# set visdom visualizer to store training process information
# see the training process on http://localhost:8097/
vis = None
if args.visualizer:
os.system("python -m visdom.server")
vis = Visualizer("main")
# construct trainer
# an identifier (prefix) for saved model
identifier = type(model).__name__ + '_'
trainer = Trainer(
args, model, loss,
train_data_loader=train_dataloader,
dev_data_loader=dev_dataloader,
train_eval_file=args.train_eval_file,
dev_eval_file=args.dev_eval_file,
optimizer=optimizer,
scheduler=scheduler,
epochs=args.epochs,
with_cuda=args.with_cuda,
save_dir=args.save_dir,
verbosity=args.verbosity,
save_freq=args.save_freq,
print_freq=args.print_freq,
resume=args.resume,
identifier=identifier,
debug=args.debug,
debug_batchnum=args.debug_batchnum,
lr=args.lr,
lr_warm_up_num=args.lr_warm_up_num,
grad_clip=args.grad_clip,
decay=args.decay,
visualizer=vis,
logger=log,
use_scheduler=args.use_scheduler,
use_grad_clip=args.use_grad_clip,
use_ema=args.use_ema,
ema=ema,
use_early_stop=args.use_early_stop,
early_stop=args.early_stop)
# start training!
start = datetime.now()
trainer.train()
print("Time of training model ", datetime.now() - start)
if __name__ == '__main__':
main(parser.parse_args())