-
Notifications
You must be signed in to change notification settings - Fork 0
/
ps5.py
230 lines (189 loc) · 7.42 KB
/
ps5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import string
### DO NOT MODIFY THIS FUNCTION ###
def load_words(file_name):
'''
file_name (string): the name of the file containing
the list of words to load
Returns: a list of valid words. Words are strings of lowercase letters.
Depending on the size of the word list, this function may
take a while to finish.
'''
print('Loading word list from file...')
# inFile: file
in_file = open(file_name, 'r')
# line: string
line = in_file.readline()
# word_list: list of strings
word_list = line.split()
print(' ', len(word_list), 'words loaded.')
in_file.close()
return word_list
### DO NOT MODIFY THIS FUNCTION ###
def is_word(word_list, word):
'''
Determines if word is a valid word, ignoring
capitalization and punctuation
word_list (list): list of words in the dictionary.
word (string): a possible word.
Returns: True if word is in word_list, False otherwise
Example:
>>> is_word(word_list, 'bat') returns
True
>>> is_word(word_list, 'asdf') returns
False
'''
word = word.lower()
word = word.strip(" !@#$%^&*()-_+={}[]|\:;'<>?,./\"")
return word in word_list
### DO NOT MODIFY THIS FUNCTION ###
def get_story_string():
"""
Returns: a joke in encrypted text.
"""
f = open("story.txt", "r")
story = str(f.read())
f.close()
return story
WORDLIST_FILENAME = 'words.txt'
class Message(object):
### DO NOT MODIFY THIS METHOD ###
def __init__(self, text):
'''
Initializes a Message object
text (string): the message's text
a Message object has two attributes:
self.message_text (string, determined by input text)
self.valid_words (list, determined using helper function load_words
'''
self.message_text = text
self.valid_words = load_words(WORDLIST_FILENAME)
### DO NOT MODIFY THIS METHOD ###
def get_message_text(self):
'''
Used to safely access self.message_text outside of the class
Returns: self.message_text
'''
return self.message_text
### DO NOT MODIFY THIS METHOD ###
def get_valid_words(self):
'''
Used to safely access a copy of self.valid_words outside of the class
Returns: a COPY of self.valid_words
'''
return self.valid_words[:]
def build_shift_dict(self, shift):
'''
Creates a dictionary that can be used to apply a cipher to a letter.
The dictionary maps every uppercase and lowercase letter to a
character shifted down the alphabet by the input shift. The dictionary
should have 52 keys of all the uppercase letters and all the lowercase
letters only.
shift (integer): the amount by which to shift every letter of the
alphabet. 0 <= shift < 26
Returns: a dictionary mapping a letter (string) to
another letter (string).
'''
shiftDict={}
lowerCase=string.ascii_lowercase
upperCase=string.ascii_uppercase
for i in range(26):
shiftDict[lowerCase[i]]=lowerCase[(i+shift)%26]
shiftDict[upperCase[i]]=upperCase[(i+shift)%26]
return shiftDict
def apply_shift(self, shift):
'''
Applies the Caesar Cipher to self.message_text with the input shift.
Creates a new string that is self.message_text shifted down the
alphabet by some number of characters determined by the input shift
shift (integer): the shift with which to encrypt the message.
0 <= shift < 26
Returns: the message text (string) in which every character is shifted
down the alphabet by the input shift
'''
cipher_text=''
shift_dict=self.build_shift_dict(shift)
for char in self.message_text:
if char in shift_dict.keys():
cipher_text+=shift_dict[char]
else:
cipher_text+=char
return cipher_text
class PlaintextMessage(Message):
def __init__(self, text, shift):
'''
Initializes a PlaintextMessage object
text (string): the message's text
shift (integer): the shift associated with this message
A PlaintextMessage object inherits from Message and has five attributes:
self.message_text (string, determined by input text)
self.valid_words (list, determined using helper function load_words)
self.shift (integer, determined by input shift)
self.encrypting_dict (dictionary, built using shift)
self.message_text_encrypted (string, created using shift)
Hint: consider using the parent class constructor so less
code is repeated
'''
Message.__init__(self,text)
self.shift=shift
self.encrypted_dict=Message.build_shift_dict(self,shift)
self.message_text_encrypted=Message.apply_shift(self,shift)
def get_shift(self):
return self.shift
def get_encrypting_dict(self):
return self.encrypting_dict
def get_message_text_encrypted(self):
return self.message_text_encrypted
def change_shift(self, shift):
self.shift=shift
class CiphertextMessage(Message):
def __init__(self, text):
'''
Initializes a CiphertextMessage object
text (string): the message's text
a CiphertextMessage object has two attributes:
self.message_text (string, determined by input text)
self.valid_words (list, determined using helper function load_words)
'''
Message.__init__(self,text)
def decrypt_message(self):
'''
Decrypt self.message_text by trying every possible shift value
and find the "best" one. We will define "best" as the shift that
creates the maximum number of real words when we use apply_shift(shift)
on the message text. If s is the original shift value used to encrypt
the message, then we would expect 26 - s to be the best shift value
for decrypting it.
Note: if multiple shifts are equally good such that they all create
the maximum number of you may choose any of those shifts (and their
corresponding decrypted messages) to return
Returns: a tuple of the best shift value used to decrypt the message
and the decrypted message text using that shift value
'''
tup=()
max1=0
for shift_val in range(26):
temp_message_text=Message.apply_shift(self,shift_val)
temp_text_words=temp_message_text.split()
count=0
for word in temp_text_words:
if is_word(self.valid_words,word):
count+=1
if max1<count:
tup=(shift_val,temp_message_text)
max1=count
return tup
#Example test case (PlaintextMessage)
plaintext = PlaintextMessage('hello', 2)
print('Expected Output: jgnnq')
print('Actual Output:', plaintext.get_message_text_encrypted())
#Example test case (CiphertextMessage)
ciphertext = CiphertextMessage('jgnnq')
print('Expected Output:', (24, 'hello'))
print('Actual Output:', ciphertext.decrypt_message())
#get_story_string()
ciphertext1 = CiphertextMessage(get_story_string())
print("\nStory decrypting ..... \n")
decrypt=ciphertext1.decrypt_message()
print("shift : ", decrypt[0])
print("Decrypted Story : ")
print(decrypt[1])