-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathNotredame-Higgins-Heringa.html
512 lines (450 loc) · 21.1 KB
/
Notredame-Higgins-Heringa.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
<!--
University of Freiburg WS 2017/2018
Chair for Bioinformatics
Supervisor: Martin Raden
Authors: Alexander Mattheis, Martin Raden
-->
<div id="algorithm_description">
<div class="description"> <!-- what-why-how description -->
<a href="http://dx.doi.org/10.1006/jmbi.2000.4042">Cédric Notredame, Desmond G. Higgins and Jaap Heringa</a>
introduced 2000 an approach that
allows a very accurate computation of multiple sequence alignments (MSA),
the Tree-based Consistency Objective Function for AlignmEnt Evaluation (short: <em>T-coffee</em>).
It's a tree-based approach,
because it uses a progressive alignment strategy
under a consistency-based function
(tree can be computed with <a href="http://rna.informatik.uni-freiburg.de/Teaching/index.jsp?toolName=Agglomerative-Clustering">UPGMA</a>).
The advantage to traditional approaches like
<a href="https://doi.org/10.1007/BF02603120">Feng-Doolittle (1987)</a>
is that the results are not based on single pairwise alignments for a
set of input sequences $\mathbb{S}$,
but rather on an arbitrary large pool of pairwise alignments on $\mathbb{S}$ from
which a position specific scoring function is derived.
This so called extended library $EL^{a,b}_{i,j}$ provides for each
pair of sequences $a,b \in \mathbb{S}$ and respective positions $i,j$ a score.
<br />
<br />
To this end, first a primary library $L^{a,b}_{i,j}$ is computed.
It covers the information how often a certain pair of sequence positions
$a_i$ and $b_j$ were aligned within the set of input alignments. This is
weighted by the 'accuracy' of the respective alignments $\mathcal{A}(a,b)$
based on sequence identity:
$$
\quad
L^{a,b}_{i,j} = \sum_{\mathcal{A}(a,b)}\begin{cases}
weight \big(\mathcal{A}(a,b) \big)
& \text{if } \binom{a_i}{b_j} \in \mathcal{A}(a,b)\\
0 & \text{else}
\end{cases}
$$
where $L^{a,b}_{i,j} = L^{b,a}_{j,i}$ and
$$
\quad
weight \big(\mathcal{A}(a,b) \big)
= \frac {matches \big(\mathcal{A}(a,b) \big) \cdot 100}
{matches \big(\mathcal{A}(a,b) \big) + mismatches \big(\mathcal{A}(a,b) \big)} \text{.}
$$
Subsequently, the extended library $EL^{a,b}_{i,j}$ is calculated to gather consistency information,
i.e. 'indirect alignments' of $a_i$ with $b_j$ when both are aligned to some $c_k$
(while taking all possible sequences $c$ into account).
Thus, all sequence triples from $\mathbb{S}$ are considered, which leads to the following formula:
$$
\quad
EL^{a,b}_{i,j}
= L^{a,b}_{i,j} + \sum_{c \in \mathbb{S} \setminus \{a,b\}} \sum_{1 \leq k \leq|c|} min \big(L^{a,c}_{i,k}, L^{c,b}_{k,j} \big).
$$
Finally, this scoring function $EL$ is used in a progressive alignment scheme (see
<a href="http://rna.informatik.uni-freiburg.de/Teaching/index.jsp?toolName=Feng-Doolittle">Feng-Doolittle</a>)
to compute a multiple sequence alignment.
Unlike in the <a href="https://doi.org/10.1007/BF02603120">Feng-Doolittle (1987)</a> approach,
the whole columns (aligned positions of all sequences) of two groups are used to
score/compute their joint alignment.
To this end, the average alignment score of two columns is used
(all chars of first column aligned with all chars of second column)
while gaps are ignored by setting $\alpha = \beta = 0$.
The latter is based on the idea that the library already indirectly
reflects the gap scoring that was present in the underlying input alignments.
<br />
<br />
In the algorithm, it is possible to add information
from arbitrary alignments to emphasize particularly important
positions of aligned sequences.
Here, you can use (multiple optimal) global and local alignments of the input sequences
using the <a href="http://rna.informatik.uni-freiburg.de/Teaching/index.jsp?toolName=Gotoh">Gotoh</a> algorithm.
Each alignment is used in the formula from above to compute $L$.
<br />
<br />
For a given input, the computation steps are
<ul>
<li>pairwise alignments</li>
<li>primary and extended library</li>
<li>phylogenetic tree</li>
<li>MSA via progressive alignment</li>
<li>multiple sequence alignment (MSA) with SoP score</li>
</ul>
which are represented in reverse order below.
The sum-of-pairs (SoP) score of the final MSA is simply the score sum of all pairwise
alignments within the MSA, i.e. the global alignment scores of pairwise row
combinations where gap-only columns are removed.
</div>
<div class="picture">
<img src="Notredame-Higgins-Heringa-120x90.png" />
</div>
</div>
<h1>Input:</h1>
<div id="algorithm_input">
<!-- ko foreach: $root.input.sequences() -->
<div class="row">
<div class="colW100">
<label>
Sequence <span data-bind="text: $root.input.clusterNames()[$index()]"></span>:
</label>
</div>
<div class="colW225">
<input class="sequence_multi" data-bind="value: $data" placeholder="EXAMPLE 'ATC'" title="Allowed are A-Z and '-'." type="text">
<!-- ko if: $index() == $root.input.clusterNames().length-1 -->
<div class="group_hint">
<b>Hint:</b> <br />
The "+" and "-" buttons can be used to add or remove sequences.
Duplicates of sequences <br />
are excluded from computations.
<!-- The distance formula
is not defined for two sequences of same type,
because the denominator gets zero.
Also, this allows a bigger code readability and runtime enhancement:
Sequences are stored as keys in hash-tables and
two times the same key is not possible in a hash-table!
-->
</div>
<!-- /ko -->
</div>
<!-- ko if: $index() == $root.input.clusterNames().length-1 -->
<button class="add_remove" data-bind="click: $root.input.addRow" title="Add Sequence" type="button">+</button>
<!-- /ko -->
<!-- ko if: $index() == $root.input.clusterNames().length-1 && $root.input.clusterNames().length > 2 -->
<button class="add_remove" data-bind="click: $root.input.removeRow" title="Remove Sequence" type="button">-</button>
<!-- /ko -->
</div>
<!-- /ko -->
<div class="row">
<div class="colW100"><label>Alignments:</label></div>
<div class="colW400">
max. #
<input class="fx_parameter" data-bind="value: input.globalAlignmentsPerSequencePair"
id="global_alignments_per_sequence_pair" type="number">
optimal alignment(s) per sequence pair
</div>
</div>
<div class="row">
<div class="colW100"><label>Scoring in $s$:</label></div>
<div class="colW400">
<span class="group"> <!-- Microsoft Browsers will fallback on text-fields using following input type -->
Match <input class="fx_parameter" data-bind="value: input.match" id="match" type="number">
Mismatch <input class="fx_parameter" data-bind="value: input.mismatch" id="mismatch" type="number">
</span>
in similarity scoring
</div>
</div>
<div class="row">
<div class="colW100"><label>Scoring in $g$:</label></div>
<div class="colW400">
<span class="group"> <!-- Microsoft Browsers will fallback on text-fields using following input type -->
Gap opening $\alpha$ <input class="fx_parameter" data-bind="value: input.baseCosts" id="base_costs" type="number">
Enlargement $\beta$ <input class="fx_parameter" data-bind="value: input.enlargement" id="enlargement" type="number">
</span>
<br />
<br />
<span data-bind="text: $root.input.gapFunction"></span>
<div class="group_hint">
<b>Hint:</b> <br />
For similarity maximization, <br /> match scores should be positive and all other scores lower. <br />
</div>
</div>
</div>
<div class="row">
<div class="colW100"><label>Add local library</label></div>
<div class="colW400"><input data-bind="checked: $root.input.useLocalLibrary" type="checkbox"></div>
</div>
<div class="localLibraryParameters" data-bind="visible: $root.input.useLocalLibrary">
<h2 class="input_heading">Local Library Parameters</h2>
<div class="row">
<div class="colW100"><label>Alignments:</label></div>
<div class="colW400">
<div class="inner_row">
<div class="column">
total number alignments
</div>
<div class="colW50">
<input data-bind="enable: input.localAlignmentsPerSequencePair() == 1, value: input.totalNumberAlignments"
id="total_number_alignments" type="number"> <br />
</div>
</div>
<div class="inner_row">
<div class="column">
max. # <input class="fx_parameter" data-bind="value: input.localAlignmentsPerSequencePair"
id="local_alignments_per_sequence_pair" type="number">
optimal alignment(s) per sequence pair
</div>
</div>
</div>
</div>
<div class="row">
<div class="colW100"><label>Scoring in $s$:</label></div>
<div class="colW400">
<span class="group"> <!-- Microsoft Browsers will fallback on text-fields using following input type -->
Match <input class="fx_parameter" data-bind="value: input.matchLocal" id="match_local" type="number">
Mismatch <input class="fx_parameter" data-bind="value: input.mismatchLocal" id="mismatch_local" type="number">
</span>
</div>
</div>
<div class="row">
<div class="colW100"><label>Scoring in $g$:</label></div>
<div class="colW400">
<span class="group"> <!-- Microsoft Browsers will fallback on text-fields using following input type -->
Gap opening $\alpha$ <input class="fx_parameter" data-bind="value: input.baseCostsLocal" id="base_costs_local" type="number">
Enlargement $\beta$ <input class="fx_parameter" data-bind="value: input.enlargementLocal" id="enlargement_local" type="number">
</span>
<br />
<br />
<span data-bind="text: $root.input.gapFunctionLocal"></span>
<div class="group_hint">
<b>Hint:</b> <br />
For similarity maximization, <br /> match scores should be positive and all other scores lower. <br />
</div>
</div>
</div>
</div>
</div>
<h1>Output:</h1>
<div id="algorithm_output">
<div class="final">
<table class="final_result_header">
<thead>
<tr>
<th>
Final result
</th>
</tr>
</thead>
</table>
<div class="final_result_with_scrollbar">
<table class="final_result">
<tbody>
<tr>
<td class="entry entry_start">
<!-- ko foreach: $root.output.progressiveAlignment() -->
<code data-bind="text: $root.output.progressiveAlignment()[$index()]"></code> <br />
<!-- /ko -->
</td>
</tr>
</tbody>
</table>
</div>
<table class="final_result_footer">
<tr>
<th>
<small>
Affine SoP score: <span data-bind="text: $root.output.score()"></span>
</small>
</th>
</tr>
</table>
</div>
<h2>Intermediate Results</h2>
<div class="merge_steps">
<table class="result_header">
<thead>
<tr>
<th>
Fusion steps
</th>
</tr>
</thead>
</table>
<div class="result_with_scrollbar">
<table class="result_categories">
<thead>
<tr>
<th>
<small><b>Group 1</b></small>
</th>
<th>
<small><b>Group 2</b></small>
</th>
<th>
<small><b>Result</b></small>
</th>
</tr>
</thead>
<tbody>
<!-- ko foreach: $root.output.firstGroups() -->
<tr>
<td class="entry entry_start">
<code data-bind="text: $root.output.firstGroupsNames()[$index()]"></code>: <br />
<!-- ko foreach: $root.output.firstGroups()[$index()] -->
<code data-bind="text: $data"></code> <br />
<!-- /ko -->
</td>
<td class="entry entry_start">
<code data-bind="text: $root.output.secondGroupsNames()[$index()]"></code>: <br />
<!-- ko foreach: $root.output.secondGroups()[$index()] -->
<code data-bind="text: $data"></code> <br />
<!-- /ko -->
</td>
<td class="entry entry_start">
<code data-bind="text: $root.output.joinedGroupNames()[$index()]"></code>: <br />
<!-- ko foreach: $root.output.joinedGroups()[$index()] -->
<code data-bind="text: $data"></code> <br />
<!-- /ko -->
</td>
</tr>
<!-- /ko -->
</tbody>
</table>
</div>
</div>
<h2>Phylogenetic Tree</h2>
<div class="newick_tree">
<table class="result_header">
<thead>
<tr>
<th>
Newick Tree
</th>
</tr>
</thead>
</table>
<div class="result_with_scrollbar">
<table class="result">
<tbody>
<tr>
<td class="entry entry_start">
<code data-bind="text: $root.output.newickString()"></code>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="tree_container"> <!-- allows to delete and reinsert the div -->
<div id="phylogenetic_tree"></div>
</div>
<!-- ko if: $root.output.newickString().length !== 1 && $root.output.newickString().indexOf(SYMBOLS.MINUS) === -1 -->
<div class="group_hint">
<b>Visualization done with</b> <br />
Smits SA, Ouverney CC, 2010. jsPhyloSVG: <br />
A Javascript Library for Visualizing Interactive and Vector-Based Phylogenetic Trees on the Web. <br />
<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0012267">
PLoS ONE 5(8): e12267. doi:10.1371/journal.pone.0012267
</a>
</div>
<!-- /ko -->
<div class="group_hint">
<b>Hint: </b> Visualization is only shown, if there are no negative distances.
</div>
<h2>Libraries</h2>
<div class="pairwise_data">
<div class="result_with_scrollbar">
<table class="result_categories top_border">
<thead>
<tr>
<th>
<small><b>Sequence Pair</b></small>
</th>
<th>
<small><b>Position Pair</b></small>
</th>
<th>
<small><b>Primary Library $L$</b></small>
</th>
<th>
<small><b>Extended Library $EL$</b></small>
</th>
</tr>
</thead>
<tbody>
<!-- ko foreach: $root.output.sequencePairsNames() -->
<tr>
<td class="entry entry_start">
<code>(</code><code data-bind="text: $data[0]"></code><code>,</code>
<code data-bind="text: $data[1]"></code><code>)</code>
<br />
</td>
<td class="entry entry_start">
<!-- ko foreach: $root.output.libPositionPairs()[$index()] -->
<code>(</code><code data-bind="text: $data"></code><code>)</code> <br />
<!-- /ko -->
</td>
<td class="entry entry_start">
<!-- ko foreach: $root.output.primLibValues()[$index()] -->
<code data-bind="text: $data"></code> <br />
<!-- /ko -->
</td>
<td class="entry entry_start">
<!-- ko foreach: $root.output.extendedLibValues()[$index()] -->
<code data-bind="text: $data"></code> <br />
<!-- /ko -->
</td>
</tr>
<!-- /ko -->
</tbody>
</table>
</div>
<table class="pairwise_data_footer">
<tr>
<th>
<small>
<b>Hint:</b> Only sequence pairs with alignment length bigger zero displayed!
</small>
</th>
</tr>
</table>
</div>
<h2>Alignments</h2>
<div class="pairwise_data">
<div class="result_with_scrollbar">
<table class="result_categories top_border">
<thead>
<tr>
<th>
<small><b>Sequence Pair</b></small>
</th>
<th>
<small><b>Global Alignments</b></small>
</th>
<th>
<small><b>Local Alignments</b></small>
</th>
</tr>
</thead>
<tbody>
<!-- ko foreach: $root.output.sequencePairsNames() -->
<tr>
<td class="entry entry_start">
<code>(</code><code data-bind="text: $data[0]"></code><code>,</code>
<code data-bind="text: $data[1]"></code><code>)</code>
<br />
</td>
<td class="entry entry_start">
<!-- ko foreach: $root.output.alignmentsGlobal()[$index()] -->
<code data-bind="text: $data[0]"></code> <br />
<code data-bind="text: $data[1]"></code> <br />
<code data-bind="text: $data[2]"></code> <br />
<br />
<!-- /ko -->
</td>
<td class="entry entry_start">
<!-- ko foreach: $root.output.alignmentsLocal()[$index()] -->
<code data-bind="text: $data[0]"></code> <br />
<code data-bind="text: $data[1]"></code> <br />
<code data-bind="text: $data[2]"></code> <br />
<br />
<!-- /ko -->
</td>
</tr>
<!-- /ko -->
</tbody>
</table>
</div>
</div>
</div>