-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathwrapper.py
114 lines (97 loc) · 3.73 KB
/
wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import collections
import numpy as np
import gym.spaces
import gym
import cv2
class FireResetEnv(gym.Wrapper):
def __init__(self, env=None):
super(FireResetEnv, self).__init__(env)
assert env.unwrapped.get_action_meanings()[1] == 'FIRE'
assert len(env.unwrapped.get_action_meanings()) >= 3
def step(self, action):
return self.env.step(action)
def reset(self):
self.env.reset()
obs, _, done, _ = self.env.step(1)
if done:
self.env.reset()
obs, _, done, _ = self.env.step(2)
if done:
self.env.reset()
return obs
class MaxAndSkipEnv(gym.Wrapper):
def __init__(self, env=None, skip=4):
super(MaxAndSkipEnv, self).__init__(env)
self._obs_buffer = collections.deque(maxlen=2)
self._skip = skip
def step(self, action):
total_reward = 0.0
done = None
for _ in range(self._skip):
obs, reward, done, info = self.env.step(action)
self._obs_buffer.append(obs)
total_reward += reward
if done:
break
max_frame = np.max(np.stack(self._obs_buffer), axis=0)
return max_frame, total_reward, done, info
def reset(self):
self._obs_buffer.clear()
obs = self.env.reset()
self._obs_buffer.append(obs)
return obs
class ProcessFrame84(gym.ObservationWrapper):
def __init__(self, env=None):
super(ProcessFrame84, self).__init__(env)
self.observation_space = gym.spaces.Box(
low=0, high=255, shape=(84, 84, 1), dtype=np.uint8)
def observation(self, obs):
return ProcessFrame84.process(obs)
@staticmethod
def process(frame):
if frame.size == 210 * 160 * 3:
img = np.reshape(frame, [210, 160, 3]).astype(np.float32)
elif frame.size == 250 * 160 * 3:
img = np.reshape(frame, [250, 160, 3]).astype(np.float32)
else:
assert False, "Unknown resolution."
img = img[:, :, 0] * 0.299 + img[:, :, 1] * 0.587 + \
img[:, :, 2] * 0.114
resized_screen = cv2.resize(img, (84, 110), interpolation=cv2.INTER_AREA)
x_t = resized_screen[18:102, :]
x_t = np.reshape(x_t, [84, 84, 1])
return x_t.astype(np.uint8)
class BufferWrapper(gym.ObservationWrapper):
def __init__(self, env, n_steps, dtype=np.float32):
super(BufferWrapper, self).__init__(env)
self.dtype = dtype
old_space = env.observation_space
self.observation_space = gym.spaces.Box(
old_space.low.repeat(n_steps, axis=0),
old_space.high.repeat(n_steps, axis=0), dtype=dtype)
def reset(self):
self.buffer = np.zeros_like(self.observation_space.low, dtype=self.dtype)
return self.observation(self.env.reset())
def observation(self, observation):
self.buffer[:-1] = self.buffer[1:]
self.buffer[-1] = observation
return self.buffer
class ImageToPyTorch(gym.ObservationWrapper):
def __init__(self, env):
super(ImageToPyTorch, self).__init__(env)
old_shape = self.observation_space.shape
new_shape = (old_shape[-1], old_shape[0], old_shape[1])
self.observation_space = gym.spaces.Box(low=0.0, high=1.0, shape=new_shape, dtype=np.float32)
def observation(self, observation):
return np.moveaxis(observation, 2, 0)
class ScaledFloatFrame(gym.ObservationWrapper):
def observation(self, obs):
return np.array(obs).astype(np.float32) / 255.0
def make_env(env_name):
env = gym.make(env_name)
env = MaxAndSkipEnv(env)
env = FireResetEnv(env)
env = ProcessFrame84(env)
env = ImageToPyTorch(env)
env = BufferWrapper(env, 4)
return ScaledFloatFrame(env)