-
Notifications
You must be signed in to change notification settings - Fork 2
/
demo_wave_model_simulation.m
223 lines (177 loc) · 8.95 KB
/
demo_wave_model_simulation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% demo_wave_model_simulation.m
%%%
%%% MATLAB script to demonstrate how to simulate the wave model on a
%%% cortical surface. In particular, the script demonstrates how to
%%% (1) simulate resting-state activity and
%%% (2) simulate evoked activity (targeting V1)
%%%
%%% NOTE 1: Current demo uses 50 modes. For a proper analysis, we advise
%%% using between 200 to 1000 modes. 200 template geometric
%%% eigenmodes are provided in data/template_eigenmodes.
%%%
%%% Original: James Pang, Monash University, 2022
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Load relevant repository MATLAB functions
addpath(genpath('functions_matlab'));
%% Load surface files for visualization
surface_interest = 'fsLR_32k';
hemisphere = 'lh';
mesh_interest = 'midthickness';
[vertices, faces] = read_vtk(sprintf('data/template_surfaces_volumes/%s_%s-%s.vtk', surface_interest, mesh_interest, hemisphere));
surface_midthickness.vertices = vertices';
surface_midthickness.faces = faces';
% Load cortex mask
cortex = dlmread(sprintf('data/template_surfaces_volumes/%s_cortex-%s_mask.txt', surface_interest, hemisphere));
cortex_ind = find(cortex);
%% Simulate resting-state activity
hemisphere = 'lh';
num_modes = 50;
% =========================================================================
% Load eigenmodes and eigenvalues data
% =========================================================================
% Load 50 fsLR_32k template midthickness surface eigenmodes
eigenmodes = dlmread(sprintf('data/examples/fsLR_32k_midthickness-%s_emode_%i.txt', hemisphere, num_modes));
eigenvalues = dlmread(sprintf('data/examples/fsLR_32k_midthickness-%s_eval_%i.txt', hemisphere, num_modes));
% Replace above line with the one below and make num_modes = 200 if using the 200 modes provided at data/template_eigenmodes
% eigenmodes = dlmread(sprintf('data/template_eigenmodes/fsLR_32k_midthickness-%s_emode_%i.txt', hemisphere, num_modes));
% eigenvalues = dlmread(sprintf('data/template_eigenmodes/fsLR_32k_midthickness-%s_eval_%i.txt', hemisphere, num_modes));
% =========================================================================
% Simulate resting-state activity using Gaussian white noise
% =========================================================================
param = loadParameters_wave_func;
param.tstep = 0.1; % in ms
param.tmax = 100; % in ms
param.tspan = [0, param.tmax];
param.T = 0:param.tstep:param.tmax;
% Change value of param.is_time_ms to 1 because the time defined above is
% in ms. This is necessary as param.gamma_s needs to match the scale.
param.is_time_ms = 1;
% Method for solving the wave model (either 'ODE' or 'Fourier')
% 'Fourier' is faster for long time series
method = 'ODE';
% method = 'Fourier';
param.r_s = 30; % (default) in mm
param.gamma_s = 116; % (default) in s^-1
if param.is_time_ms==1
param.gamma_s = 116*1e-3;
end
% Create Gaussian white noise external input
% random number is set for now for reproducibility
rng(1)
ext_input = randn(size(eigenmodes,1), length(param.T));
[mode_activity_rest, simulated_activity_rest] = model_neural_waves(eigenmodes, eigenvalues, ext_input, param, method);
% =========================================================================
% Some visualizations of results
% =========================================================================
% Snapshot of activity snapshot every 10 ms
t_interest = [0:10:100];
t_interest_ind = dsearchn(param.T', t_interest');
surface_to_plot = surface_midthickness;
data_to_plot = simulated_activity_rest(:, t_interest_ind);
medial_wall = find(cortex==0);
with_medial = 0;
fig = draw_surface_bluewhitered_gallery_dull(surface_to_plot, data_to_plot, hemisphere, medial_wall, with_medial);
fig.Name = 'Activity snapshots without medial wall view';
colormap(fig, parula)
% Video of activity every 0.5 ms (increase this to better see the waves)
surface_to_plot = surface_midthickness;
data_to_plot = simulated_activity_rest;
t = param.T;
t_interest = [0:0.5:100];
is_time_ms = 1;
medial_wall = find(cortex==0);
with_medial = 1;
cmap = parula;
show_colorbar = 1;
output_filename = 'rest_waves';
save_video = 0;
fig = video_surface_activity(surface_to_plot, data_to_plot, hemisphere, t, ...
t_interest, is_time_ms, medial_wall, with_medial, ...
cmap, show_colorbar, output_filename, save_video);
%% Simulate evoked activity (stimulating V1)
hemisphere = 'lh';
num_modes = 50;
% =========================================================================
% Load eigenmodes and eigenvalues data
% =========================================================================
% Load 50 fsLR_32k template midthickness surface eigenmodes
eigenmodes = dlmread(sprintf('data/examples/fsLR_32k_midthickness-%s_emode_%i.txt', hemisphere, num_modes));
eigenvalues = dlmread(sprintf('data/examples/fsLR_32k_midthickness-%s_eval_%i.txt', hemisphere, num_modes));
% Replace above line with the one below and make num_modes = 200 if using the 200 modes provided at data/template_eigenmodes
% eigenmodes = dlmread(sprintf('data/template_eigenmodes/fsLR_32k_midthickness-%s_emode_%i.txt', hemisphere, num_modes));
% eigenvalues = dlmread(sprintf('data/template_eigenmodes/fsLR_32k_midthickness-%s_eval_%i.txt', hemisphere, num_modes));
% =========================================================================
% Load the HCPMMP1 (Glasser360) atlas
% =========================================================================
if strcmpi(hemisphere, 'lh')
parc = gifti('data/parcellations/Q1-Q6_RelatedParcellation210.L.CorticalAreas_dil_Colors.32k_fs_LR.label.gii');
elseif strcmpi(hemisphere, 'rh')
parc = gifti('data/parcellations/Q1-Q6_RelatedParcellation210.R.CorticalAreas_dil_Colors.32k_fs_LR.label.gii');
end
% =========================================================================
% Find parcel number and index of vertices of V1
% =========================================================================
if strcmpi(hemisphere, 'lh')
ROI = 'L_V1_ROI';
elseif strcmpi(hemisphere, 'rh')
ROI = 'R_V1_ROI';
end
parcel_number = parc.labels.key(strcmpi(parc.labels.name, ROI));
parcel_ind = find(parc.cdata==parcel_number);
% =========================================================================
% Simulate evoked activity stimulating all vertices within V1 ROI
% =========================================================================
param = loadParameters_wave_func;
param.tstep = 0.1; % in ms
param.tmax = 100; % in ms
param.tspan = [0, param.tmax];
param.T = 0:param.tstep:param.tmax;
% Change value of param.is_time_ms to 1 because the time defined above is
% in ms. This is necessary as param.gamma_s needs to match the scale.
param.is_time_ms = 1;
% Method for solving the wave model (either 'ODE' or 'Fourier')
% 'Fourier' is faster for long time series
method = 'ODE';
% method = 'Fourier';
param.r_s = 30; % (default) in mm
param.gamma_s = 116; % (default) in s^-1
if param.is_time_ms==1
param.gamma_s = 116*1e-3;
end
% Create a 10 ms external input with amplitude = 20 to V1 ROI
% results are robust to amplitude
ext_input_time_range = [10, 20];
ext_input_time_range_ind = dsearchn(param.T', ext_input_time_range');
ext_input_amplitude = 20;
ext_input = zeros(size(eigenmodes,1), length(param.T));
ext_input(parcel_ind, ext_input_time_range_ind(1):ext_input_time_range_ind(2)) = ext_input_amplitude;
[mode_activity_evoke, simulated_activity_evoke] = model_neural_waves(eigenmodes, eigenvalues, ext_input, param, method);
% =========================================================================
% Some visualizations of results
% =========================================================================
% Snapshot of activity snapshot every 10 ms
t_interest = [10:10:100];
t_interest_ind = dsearchn(param.T', t_interest');
surface_to_plot = surface_midthickness;
data_to_plot = simulated_activity_evoke(:, t_interest_ind);
medial_wall = find(cortex==0);
with_medial = 0;
fig = draw_surface_bluewhitered_gallery_dull(surface_to_plot, data_to_plot, hemisphere, medial_wall, with_medial);
fig.Name = 'Activity snapshots without medial wall view';
colormap(fig, parula)
% Video of activity every 0.5 ms (increase this to better see the waves)
surface_to_plot = surface_midthickness;
data_to_plot = simulated_activity_evoke;
t = param.T;
t_interest = [10:0.5:100];
is_time_ms = 1;
medial_wall = find(cortex==0);
with_medial = 0;
cmap = parula;
show_colorbar = 1;
output_filename = 'evoke_waves';
save_video = 0;
fig = video_surface_activity(surface_to_plot, data_to_plot, hemisphere, t, ...
t_interest, is_time_ms, medial_wall, with_medial, ...
cmap, show_colorbar, output_filename, save_video);