-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathMakefile
executable file
·226 lines (198 loc) · 10.5 KB
/
Makefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
.PHONY: clean clean-test clean-pyc clean-build
SHELL=/bin/bash
## remove Python file artifacts
clean-pyc:
find . -name '*.pyc' -exec rm -f {} +
find . -name '*.pyo' -exec rm -f {} +
find . -name '*~' -exec rm -f {} +
find . -name '__pycache__' -exec rm -fr {} +
## remove test and coverage artifacts
clean-test:
rm -f .coverage
rm -fr htmlcov/
rm -fr .pytest_cache
## remove build artifacts
clean-build:
rm -fr build/
rm -fr dist/
rm -fr .eggs/
find . -name '*.egg-info' -exec rm -fr {} +
find . -name '*.egg' -exec rm -f {} +
## remove all build, test, coverage and Python artifacts
clean: clean-build clean-pyc clean-test
## pcakage ml
dist-ml: clean
python ml_source/src/setup.py bdist_wheel
rm -fr build/
## pcakage mlops
dist-mlops: clean
python ml_ops/src/setup.py bdist_wheel
rm -fr build/
## pcakage all
dist: dist-ml dist-mlops
## install ml locally
install-ml: clean
python ml_source/src/setup.py install
rm -fr build/
## install mlops locally
install-mlops: clean
python ml_ops/src/setup.py install
rm -fr build/
## install all locally
install: install-ml install-mlops
## unit test ml locally
test-ml: install-ml
cd ml_source && coverage run --source=taxi_fares,monitoring -m unittest discover
cd ml_source && coverage report -m
## unit test mlops locally
test-mlops: install-mlops
cd ml_ops && coverage run --source=taxi_fares_mlops -m unittest discover
cd ml_ops && coverage report -m
## unit test all locally
test: test-ml test-mlops
coverage combine ml_source/.coverage ml_ops/.coverage
coverage report
## lint all python src and tests
lint:
flake8 --max-line-length=88 ml_ops/src ml_ops/tests ml_source/src ml_source/tests
## databricks authenticate
databricks-authenticate:
$(info Authenticate Databricks CLI)
$(info Follow https://docs.microsoft.com/en-us/azure/databricks/dev-tools/cli/ for getting Host and token value)
databricks configure --token
$(info Taking Backup of .databrickscfg file in .env/databrickscfg)
mkdir -p .env
cp ~/.databrickscfg .env/.databrickscfg
$(info Creating env script file for mlflow)
DATABRICKS_HOST="$$(cat ~/.databrickscfg | grep '^host' | cut -d' ' -f 3)"; \
DATABRICKS_TOKEN="$$(cat ~/.databrickscfg | grep '^token' | cut -d' ' -f 3)"; \
echo "export MLFLOW_TRACKING_URI=databricks"> .env/.databricks_env.sh; \
echo "export DATABRICKS_HOST=$$DATABRICKS_HOST" >> .env/.databricks_env.sh; \
echo "export DATABRICKS_TOKEN=$$DATABRICKS_TOKEN" >> .env/.databricks_env.sh
## databricks init (create cluster, base workspace, mlflow experiment, secret scope)
databricks-init:
echo "Creating databricks workspace root directory"; \
databricks workspace mkdirs /azure-databricks-mlops-mlflow; \
echo "Creating databricks dbfs root directory"; \
databricks fs mkdirs dbfs:/FileStore/libraries/azure-databricks-mlops-mlflow; \
CLUSTER_ID="$$(databricks clusters list --output json | \
jq ".clusters[] | select(.cluster_name == \"azure-databricks-mlops-mlflow\") | .cluster_id")"; \
echo "Got existing cluster azure-databricks-mlops-mlflow with id: $$CLUSTER_ID"; \
if [[ $$CLUSTER_ID == "" ]]; then \
echo "Creating databricks cluster azure-databricks-mlops-mlflow"; \
databricks clusters create --json-file ml_ops/deployment/databricks/cluster_template.json; \
fi; \
SECRET_SCOPE_NAME="$$(databricks secrets list-scopes --output json | \
jq ".scopes[] | select(.name == \"azure-databricks-mlops-mlflow\") | .name")"; \
echo "Got existing secret scope $$SECRET_SCOPE_NAME"; \
if [[ $$SECRET_SCOPE_NAME == "" ]]; then \
echo "Creating databricks secret scope azure-databricks-mlops-mlflow"; \
databricks secrets create-scope --scope azure-databricks-mlops-mlflow --initial-manage-principal users; \
fi; \
MLFLOW_EXPERIMENT_ID="$$(source .env/.databricks_env.sh && mlflow experiments list | \
grep '/azure-databricks-mlops-mlflow/Experiment' | \
cut -d' ' -f 1)"; \
echo "Got existing mlflow experiment id: $$MLFLOW_EXPERIMENT_ID"; \
if [[ "$$MLFLOW_EXPERIMENT_ID" == "" ]]; then \
echo "Creating mlflow experiment in databricks workspace /azure-databricks-mlops-mlflow/Experiment directory"; \
source .env/.databricks_env.sh && mlflow experiments create --experiment-name /azure-databricks-mlops-mlflow/Experiment; \
fi; \
## databricks secrets put
databricks-secrets-put:
$(info Put databricks secret azure-blob-storage-account-name)
@read -p "Enter Azure Blob storage Account Name: " stg_account_name; \
databricks secrets put --scope azure-databricks-mlops-mlflow --key azure-blob-storage-account-name --string-value $$stg_account_name
$(info Put databricks secret azure-blob-storage-container-name)
@read -p "Enter Azure Blob storage Container Name: " stg_container_name; \
databricks secrets put --scope azure-databricks-mlops-mlflow --key azure-blob-storage-container-name --string-value $$stg_container_name
$(info Put databricks secret azure-shared-access-key)
$(info Mount Blob Storage https://docs.microsoft.com/en-gb/azure/databricks/data/data-sources/azure/azure-storage)
@read -p "Enter Azure Blob storage Shared Access Key: " shared_access_key; \
databricks secrets put --scope azure-databricks-mlops-mlflow --key azure-blob-storage-shared-access-key --string-value $$shared_access_key
## databricks secrets put application insights key
databricks-add-app-insights-key:
$(info Put app insights key)
@read -p "Enter App insights key: " app_insights_key; \
if [[ "$$app_insights_key" != '' ]]; then \
echo "Setting app insights key : $$app_insights_key "; \
databricks secrets put --scope azure-databricks-mlops-mlflow --key app_insights_key --string-value "$$app_insights_key"; \
fi; \
## databricks deploy (upload wheel pacakges to databricks DBFS workspace)
databricks-deploy-code: dist
$(info Upload wheel packages into databricks dbfs root directory)
databricks fs cp --overwrite --recursive dist/ dbfs:/FileStore/libraries/azure-databricks-mlops-mlflow/
$(info Importing orchestrator notebooks into databricks workspace root directory)
databricks workspace import_dir --overwrite ml_ops/orchestrator/ /azure-databricks-mlops-mlflow/
$(info Create or update databricks jobs)
## databricks deploy jobs (create databricks jobs)
databricks-deploy-jobs: databricks-deploy-code
$(info Getting required values from databricks)
CLUSTER_ID="$$(databricks clusters list --output json | \
jq ".clusters[] | select(.cluster_name == \"azure-databricks-mlops-mlflow\") | .cluster_id")"; \
echo "Got existing cluster id: $$CLUSTER_ID"; \
TRAINING_JOB_ID="$$(databricks jobs list --output json | \
jq ".jobs[] | select(.settings.name == \"taxi_fares_model_training\") | .job_id")"; \
echo "Got existing taxi_fares_model_training job id: $$TRAINING_JOB_ID"; \
if [[ "$$TRAINING_JOB_ID" == "" ]]; then \
databricks jobs create --json "{\"name\": \"taxi_fares_model_training\", \"existing_cluster_id\": $$CLUSTER_ID}"; \
TRAINING_JOB_ID="$$(databricks jobs list --output json | \
jq ".jobs[] | select(.settings.name == \"taxi_fares_model_training\") | .job_id")"; \
echo "Created taxi_fares_model_training with job id: $$TRAINING_JOB_ID"; \
fi; \
BATCH_SCORING_JOB_ID="$$(databricks jobs list --output json | \
jq ".jobs[] | select(.settings.name == \"taxi_fares_batch_scoring\") | .job_id")"; \
echo "Got existing taxi_fares_batch_scoring job id: $$BATCH_SCORING_JOB_ID"; \
if [[ "$$BATCH_SCORING_JOB_ID" == "" ]]; then \
databricks jobs create --json "{\"name\": \"taxi_fares_batch_scoring\", \"existing_cluster_id\": $$CLUSTER_ID}"; \
BATCH_SCORING_JOB_ID="$$(databricks jobs list --output json | \
jq ".jobs[] | select(.settings.name == \"taxi_fares_batch_scoring\") | .job_id")"; \
echo "Created taxi_fares_batch_scoring with job id: $$BATCH_SCORING_JOB_ID"; \
fi; \
MLFLOW_EXPERIMENT_ID="$$(source .env/.databricks_env.sh && mlflow experiments list | \
grep '/azure-databricks-mlops-mlflow/Experiment' | \
cut -d' ' -f 1)"; \
echo "Got existing mlflow experiment id: $$MLFLOW_EXPERIMENT_ID"; \
echo "Updating taxi_fares_model_training by using template ml_ops/deployment/databricks/job_template_taxi_fares_training.json"; \
TRAINING_JOB_UPDATE_JSON="$$(cat ml_ops/deployment/databricks/job_template_taxi_fares_training.json | \
sed "s/\"FILL_JOB_ID\"/$$TRAINING_JOB_ID/" | \
sed "s/FILL_MLFLOW_EXPERIMENT_ID/$$MLFLOW_EXPERIMENT_ID/" | \
sed "s/\"FILL_CLUSTER_ID\"/$$CLUSTER_ID/")"; \
databricks jobs reset --job-id $$TRAINING_JOB_ID --json "$$TRAINING_JOB_UPDATE_JSON"; \
echo "Updating taxi_fares_batch_scoring by using template ml_ops/deployment/databricks/job_template_taxi_fares_batch_scoring.json"; \
BATCH_SCORING_JOB_UPDATE_JSON="$$(cat ml_ops/deployment/databricks/job_template_taxi_fares_batch_scoring.json | \
sed "s/\"FILL_JOB_ID\"/$$BATCH_SCORING_JOB_ID/" | \
sed "s/FILL_MLFLOW_EXPERIMENT_ID/$$MLFLOW_EXPERIMENT_ID/" | \
sed "s/\"FILL_CLUSTER_ID\"/$$CLUSTER_ID/")"; \
databricks jobs reset --job-id $$BATCH_SCORING_JOB_ID --json "$$BATCH_SCORING_JOB_UPDATE_JSON"; \
## deploy databricks all
deploy: databricks-deploy-jobs
## run databricks taxi_fares_model_training job
run-taxifares-model-training:
$(info Triggering model training job)
TRAINING_JOB_ID="$$(databricks jobs list --output json | \
jq ".jobs[] | select(.settings.name == \"taxi_fares_model_training\") | .job_id")"; \
RUN_ID="$$(databricks jobs run-now --job-id $$TRAINING_JOB_ID | \
jq ".number_in_job")"; \
DATABRICKS_HOST="$$(cat ~/.databrickscfg | grep '^host' | cut -d' ' -f 3)"; \
DATABRICKS_ORG_ID="$$(echo $$DATABRICKS_HOST | cut -d'-' -f 2 | cut -d'.' -f 1)"; \
echo "Open the following link in browser to check result -"; \
echo "$$DATABRICKS_HOST/?o=$$DATABRICKS_ORG_ID/#job/$$TRAINING_JOB_ID/run/$$RUN_ID"; \
## run databricks taxi_fares_batch_scoring job
run-taxifares-batch-scoring:
$(info Triggering batch scoring job)
BATCH_SCORING_JOB_ID="$$(databricks jobs list --output json | \
jq ".jobs[] | select(.settings.name == \"taxi_fares_batch_scoring\") | .job_id")"; \
RUN_ID="$$(databricks jobs run-now --job-id $$BATCH_SCORING_JOB_ID | \
jq ".number_in_job")"; \
DATABRICKS_HOST="$$(cat ~/.databrickscfg | grep '^host' | cut -d' ' -f 3)"; \
DATABRICKS_ORG_ID="$$(echo $$DATABRICKS_HOST | cut -d'-' -f 2 | cut -d'.' -f 1)"; \
echo "Open the following link in browser to check result -"; \
echo "$$DATABRICKS_HOST/?o=$$DATABRICKS_ORG_ID/#job/$$BATCH_SCORING_JOB_ID/run/$$RUN_ID"; \
# continuous integration (CI)
ci: lint test dist
# continuous deployment (CD)
cd: deploy
# train model
train: run-taxifares-model-training
# batch scoring
score: run-taxifares-batch-scoring