Skip to content

Latest commit

 

History

History

diffusion

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

Solution of Diffusion Equation

Description

Let consider following one step transition probability :

$$ W(il-jl,\,\epsilon) = \begin{cases} \frac{1}{2} & (|i-j| = 1) \\ 0 & \text{else} \end{cases} $$

For small $\epsilon,\,l$, the probability distribution function satisfies diffusion equation :

$$ \frac{\partial}{\partial t}w(x,t) = D \frac{\partial^2 w(x,t)}{\partial x^2} ~~\text{ where } D = \frac{l^2}{2\epsilon} $$

And we can solve above equation with $w_i(0) = \delta_{i0}$ as initial state.

$$ w(x,t) = \frac{1}{\sqrt{4\pi D t}} \exp \left(-\frac{x^2}{4Dt}\right) $$

In this project, we want to compare distribution of end points of random walks via kernel density estimation (KDE) with this probability distribution function.

Setting

  • Time step : $\epsilon = 10^{-2}$
  • Unit Distance : $l = 10^{-1} \,\Rightarrow\, t=10,\,D=\frac{1}{2}$
  • Length of Path : $n = 1000$
  • Total number of trials : $N = 10000$
  • Kernel : Epanechnikov Quadratic Kernel with window size $\lambda = 1$

Build Process

# Data Generation
cargo run --release

# Plot
python nc_plot.py

Result

References

  • M. Chaichian, A. Demichev, Path Integrals in Physics: Volume I Stochastic Processes and Quantum Mechanics, CRC Press (2001)