-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathobject_detection.py
62 lines (49 loc) · 2.37 KB
/
object_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import cv2
import numpy as np
class ObjectDetection:
def __init__(self, weights_path="C:\\Users\\DELL\\OneDrive\\Desktop\\Project\\dnn_model\\yolov4.weights", cfg_path="C:\\Users\\DELL\\OneDrive\\Desktop\\Project\\dnn_model\\yolov4.cfg"):
# Display initialization messages
print("Loading Object Detection")
print("Running OpenCV DNN with YOLOv4")
# Set non-maximum suppression threshold
self.nmsThreshold = 0.4
# Set confidence threshold for object detection
self.confThreshold = 0.5
# Set image size for consistency
self.image_size = 608
# Load YOLOv4 network
net = cv2.dnn.readNet(weights_path, cfg_path)
# Enable GPU CUDA for faster inference
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
self.model = cv2.dnn_DetectionModel(net)
# Initialize empty lists for classes and colors
self.classes = []
self.load_class_names()
self.colors = np.random.uniform(0, 255, size=(80, 3))
# Set input parameters for the model
self.model.setInputParams(size=(self.image_size, self.image_size), scale=1/255)
def load_class_names(self, classes_path="C:\\Users\\DELL\\OneDrive\\Desktop\\Project\\dnn_model\\classes.txt"):
"""
Load class names from a file and store them in the 'classes' attribute.
Args:
classes_path (str): Path to the file containing class names.
Returns:
list: List of loaded class names.
"""
with open(classes_path, "r") as file_object:
for class_name in file_object.readlines():
class_name = class_name.strip()
self.classes.append(class_name)
# Generate random colors for each class
self.colors = np.random.uniform(0, 255, size=(80, 3))
return self.classes
def detect(self, frame):
"""
Perform object detection on a given frame.
Args:
frame (numpy.ndarray): Input image frame for object detection.
Returns:
tuple: A tuple containing class IDs, confidence scores, and bounding boxes for detected objects.
"""
return self.model.detect(frame, nmsThreshold=self.nmsThreshold, confThreshold=self.confThreshold)