-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdataset.py
302 lines (245 loc) · 9.51 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import numpy as np, sys, math, os
import json
import pickle
import copy
import utils
import re
from utils import args, tqdm
import time
data_home = 'run_time/data'
class DatasetReader:
def __init__(self, ds):
self.ds = ds
if ds == 'yc64' or ds == 'test':
self.N = 144527
self.reader = self.yc64
self.min_ts, self.max_ts = 1411604904, 1412017199
elif ds == 'yc4':
self.N = 2312432
self.reader = self.yc4
self.min_ts, self.max_ts = 1408507486, 1412017199
elif ds == 'yc':
self.N = 9249729
self.reader = self.yc
self.min_ts, self.max_ts = 1396292400, 1412017199
dt = self.max_ts - self.min_ts
dt2 = dt // 7 * 3
self.train_ts = self.min_ts + dt2 * 2
def yc(self, frac=1):
pbar = tqdm(desc='read data', total=self.N)
f = open(f'{data_home}/yc_1_{frac}/data.txt', 'r')
for line in f:
pbar.update(1)
line = line[:-1]
sid, vid_list_str = line.split()
vid_list = []
for vid in vid_list_str.split(','):
vid, cls, ts = vid.split(':')
cls = int(cls) # cls: 0, 1, 2, ...
ts = int(ts)
vid_list.append([vid, cls, ts])
yield vid_list
f.close()
pbar.close()
def yc4(self):
yield from self.yc(4)
def yc64(self):
yield from self.yc(64)
def wx(self):
pass
class DataProcess:
def __init__(self, ds, adj_length, seq_length):
self.ds = ds
# self.adj_length = adj_length
# self.seq_length = seq_length
self.vid2node = {}
self.vid2node['[MASK]'] = 0
self.DR = DatasetReader(ds)
self.G_in, self.G_out, self.train_data, self.test_data = self.build_graph(seq_length)
rdm = np.random.RandomState(777)
rdm.shuffle(self.train_data)
rdm = np.random.RandomState(333)
rdm.shuffle(self.test_data)
args.update(nb_nodes=len(self.vid2node))
args.update(nb_edges_0=self.G_in[0].nb_edges())
args.update(nb_edges_1=self.G_in[1].nb_edges())
self.adj_in_0 = self.build_adj(self.G_in[0], adj_length)
self.adj_out_0 = self.build_adj(self.G_out[0], adj_length)
self.adj_in_1 = self.build_adj(self.G_in[1], adj_length)
self.adj_out_1 = self.build_adj(self.G_out[1], adj_length)
self.adjs_tmp = [self.adj_in_0, self.adj_out_0, self.adj_in_1, self.adj_out_1]
self.adjs = [a[0] for a in self.adjs_tmp]
def build_graph(self, seq_length):
test_seq = []
G_in = [utils.Graph() for i in range(2)]
G_out = [utils.Graph() for i in range(2)]
train_data = []
test_data = []
for num_data, vid_list in enumerate(self.DR.reader()):
vid_list_for_graph = [[] for i in range(2)]
vid_list_for_train = [[] for i in range(2)]
first_pos = [{} for i in range(2)]
for i, (vid, typ, ts) in enumerate(vid_list):
if vid not in self.vid2node:
self.vid2node[vid] = len(self.vid2node)
for_train = False
if ts < self.DR.train_ts:
for_train = True
if for_train:
vid_list_for_graph[typ].append(vid)
if typ == 0 and vid not in first_pos[0]:
share_history = vid_list_for_train[0]
if vid not in first_pos[1]:
click_history = vid_list_for_train[1]
else:
k = first_pos[1][vid]
click_history = vid_list_for_train[1][:k]
if len(click_history) >= 5 and len(share_history) >= 1:
seq_share = [share_history[-seq_length: ], click_history[-seq_length: ], vid]
if for_train:
train_data.append(seq_share)
else:
test_data.append(seq_share)
if vid not in first_pos[typ]:
first_pos[typ][vid] = len(vid_list_for_train[typ])
vid_list_for_train[typ].append(vid)
for typ in range(2):
for i, vid in enumerate(vid_list_for_graph[typ]):
if i == 0:
continue
now_node = self.vid2node[vid]
pre_node = self.vid2node[vid_list_for_graph[typ][i - 1]]
if now_node != pre_node:
G_in[typ].add_edge(pre_node, now_node)
G_out[typ].add_edge(now_node, pre_node)
else:
pass
return G_in, G_out, train_data, test_data
def build_adj(self, G, M):
# M: number of adj per node
N = args.nb_nodes
# adj shape: [N, M]
adj = [None] * N
adj[0] = [0] * M
w = [None] * N
w[0] = [0] * M
rdm = np.random.RandomState(555)
pbar = tqdm(total=N - 1, desc='building adj')
for node in range(1, N):
pbar.update(1)
adj_list = G.get_adj(node)
if len(adj_list) > M:
adj_list = rdm.choice(adj_list, size=M, replace=False).tolist()
mask = [0] * (M - len(adj_list))
adj_list = adj_list[:] + mask
adj[node] = adj_list
w_list = [G.edge_cnt.get((node, x), 0) for x in adj_list]
w[node] = w_list
pbar.close()
return [adj, w]
class Data:
def __init__(self):
self.dp = DataProcess(args.ds, args.adj_length, args.seq_length)
self.adjs = self.dp.adjs
self.vid2node = self.dp.vid2node
self.load_data()
self.status = 'train'
def load_data(self):
self.data = self.dp.train_data + self.dp.test_data
nb_train = len(self.dp.train_data)
nb_non_train = len(self.dp.test_data)
nb_vali = nb_non_train // 3
nb_test = nb_non_train - nb_vali
nb_data = len(self.data)
assert nb_data > 0
args.update(nb_data=nb_data, nb_train=nb_train, nb_vali=nb_vali, nb_test=nb_test)
def pad_seq(self, node_list):
L = args.seq_length
if len(node_list) < L:
node_list = node_list + [0] * (L - len(node_list))
return node_list
def sample_neg(self, pos, rdm):
neg = set()
while len(neg) < args.num_neg:
n = rdm.randint(args.nb_nodes)
if n != 0 and n != pos and n not in neg:
neg.add(n)
neg = sorted(neg)
return neg
def get_data_by_idx(self, idx, rdm):
share_history, click_history, pos = self.data[idx]
pos = self.vid2node[pos]
share_seq = [self.vid2node[vid] for vid in share_history]
click_seq = [self.vid2node[vid] for vid in click_history]
share_list = self.pad_seq(share_seq)
click_list = self.pad_seq(click_seq)
ret = [share_list, click_list, pos]
if self.status == 'train':
neg = self.sample_neg(pos, rdm)
ret.append(neg)
return ret
def get_batch_by_idxs(self, idxs, rdm=None):
data = None
for idx in idxs:
d = self.get_data_by_idx(idx, rdm)
n = len(d)
if data is None:
data = [[] for _ in range(n)]
for i in range(n):
data[i].append(d[i])
# data: [0-seq, 1-typ, 2-len, 3-nxt, 4-label]
batch = [np.array(d) for d in data]
return batch
def gen_train_batch_for_train(self, batch_size):
rdm = np.random.RandomState(333)
while True:
idxs = list(range(args.nb_train))
rdm.shuffle(idxs)
for i in range(0, args.nb_train, batch_size):
batch = self.get_batch_by_idxs(idxs[i: i + batch_size], rdm)
yield batch
def get_data_idxs(self, name):
if name == 'train':
return 0, args.nb_train
if name == 'vali':
return args.nb_train, args.nb_train + args.nb_vali
if name == 'test':
return args.nb_train + args.nb_vali, args.nb_data
def gen_metric_batch(self, name, batch_size):
self.status = 'metric'
begin_idx, end_idx = self.get_data_idxs(name)
yield from self.gen_data_batch(begin_idx, end_idx, batch_size)
self.status = 'train'
def gen_all_batch(self, batch_size):
begin_idx = 0
end_idx = args.nb_data
yield from self.gen_data_batch(begin_idx, end_idx, batch_size)
def gen_data_batch(self, begin_idx, end_idx, batch_size):
for i in range(begin_idx, end_idx, batch_size):
a, b = i, min(end_idx, i + batch_size)
batch = self.get_batch_by_idxs(range(a, b))
yield batch
def metric(self, pred_list, true_vid):
pred_list = np.array(pred_list)
true_vid = np.expand_dims(np.array(true_vid), -1)
print(pred_list.shape)
print(true_vid.shape)
k = 100
acc_ar = (pred_list == true_vid)[:, :k] # [BS, K]
acc = acc_ar.sum(-1)
rank = np.argmax(acc_ar[:, :k], -1) + 1
mrr = (acc / rank).mean()
ndcg = (acc / np.log2(rank + 1)).mean()
acc = acc.mean()
# print(acc_ar)
# print(mrr)
# input()
acc *= 100
mrr *= 100
ndcg *= 100
ret = acc
return ret, '{:.3f},{:.4f},{:.4f}'.format(acc, mrr, ndcg)
def main():
pass
if __name__ == '__main__':
main()