forked from ANSSI-FR/libdrbg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsha0.c
272 lines (220 loc) · 6.71 KB
/
sha0.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/*
* Copyright (C) 2022 - This file is part of libdrbg project
*
* Author: Ryad BENADJILA <ryad.benadjila@ssi.gouv.fr>
* Contributor: Arnaud EBALARD <arnaud.ebalard@ssi.gouv.fr>
*
* This software is licensed under a dual BSD and GPL v2 license.
* See LICENSE file at the root folder of the project.
*/
#include "libhash_config.h"
#ifdef WITH_HASH_SHA0
#include "sha0.h"
#define ROTL_SHA0(x, n) ((((uint32_t)(x)) << (n)) | (((uint32_t)(x)) >> (32-(n))))
/* All the inner SHA-0 operations */
#define K1_SHA0 0x5a827999
#define K2_SHA0 0x6ed9eba1
#define K3_SHA0 0x8f1bbcdc
#define K4_SHA0 0xca62c1d6
#define F1_SHA0(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
#define F2_SHA0(x, y, z) ((x) ^ (y) ^ (z))
#define F3_SHA0(x, y, z) (((x) & (y)) | ((z) & ((x) | (y))))
#define F4_SHA0(x, y, z) ((x) ^ (y) ^ (z))
#define SHA0_EXPAND(W, i) (W[i & 15] = (W[i & 15] ^ W[(i - 14) & 15] ^ W[(i - 8) & 15] ^ W[(i - 3) & 15]))
#define SHA0_SUBROUND(a, b, c, d, e, F, K, data) do { \
uint32_t A_, B_, C_, D_, E_; \
A_ = (e + ROTL_SHA0(a, 5) + F(b, c, d) + K + data); \
B_ = a; \
C_ = ROTL_SHA0(b, 30); \
D_ = c; \
E_ = d; \
/**/ \
a = A_; b = B_; c = C_; d = D_; e = E_; \
} while(0)
/* SHA-0 core processing. Returns 0 on success, -1 on error. */
static inline int sha0_process(sha0_context *ctx,
const uint8_t data[SHA0_BLOCK_SIZE])
{
uint32_t A, B, C, D, E;
uint32_t W[16];
int ret;
unsigned int i;
MUST_HAVE((data != NULL), ret, err);
SHA0_HASH_CHECK_INITIALIZED(ctx, ret, err);
/* Init our inner variables */
A = ctx->sha0_state[0];
B = ctx->sha0_state[1];
C = ctx->sha0_state[2];
D = ctx->sha0_state[3];
E = ctx->sha0_state[4];
/* Load data */
for (i = 0; i < 16; i++) {
GET_UINT32_BE(W[i], data, (4 * i));
}
for (i = 0; i < 80; i++) {
if(i <= 15){
SHA0_SUBROUND(A, B, C, D, E, F1_SHA0, K1_SHA0, W[i]);
}
else if((i >= 16) && (i <= 19)){
SHA0_SUBROUND(A, B, C, D, E, F1_SHA0, K1_SHA0, SHA0_EXPAND(W, i));
}
else if((i >= 20) && (i <= 39)){
SHA0_SUBROUND(A, B, C, D, E, F2_SHA0, K2_SHA0, SHA0_EXPAND(W, i));
}
else if((i >= 40) && (i <= 59)){
SHA0_SUBROUND(A, B, C, D, E, F3_SHA0, K3_SHA0, SHA0_EXPAND(W, i));
}
else{
SHA0_SUBROUND(A, B, C, D, E, F4_SHA0, K4_SHA0, SHA0_EXPAND(W, i));
}
}
/* Update state */
ctx->sha0_state[0] += A;
ctx->sha0_state[1] += B;
ctx->sha0_state[2] += C;
ctx->sha0_state[3] += D;
ctx->sha0_state[4] += E;
ret = 0;
err:
return ret;
}
/* Init hash function. Returns 0 on success, -1 on error. */
int sha0_init(sha0_context *ctx)
{
int ret;
MUST_HAVE((ctx != NULL), ret, err);
ctx->sha0_total = 0;
ctx->sha0_state[0] = 0x67452301;
ctx->sha0_state[1] = 0xefcdab89;
ctx->sha0_state[2] = 0x98badcfe;
ctx->sha0_state[3] = 0x10325476;
ctx->sha0_state[4] = 0xc3d2e1f0;
/* Tell that we are initialized */
ctx->magic = SHA0_HASH_MAGIC;
ret = 0;
err:
return ret;
}
int sha0_update(sha0_context *ctx, const uint8_t *input, uint32_t ilen)
{
const uint8_t *data_ptr = input;
uint32_t remain_ilen = ilen;
uint16_t fill;
uint8_t left;
int ret;
MUST_HAVE((input != NULL) || (ilen == 0), ret, err);
SHA0_HASH_CHECK_INITIALIZED(ctx, ret, err);
/* Nothing to process, return */
if (ilen == 0) {
ret = 0;
goto err;
}
/* Get what's left in our local buffer */
left = (ctx->sha0_total & 0x3F);
fill = (uint16_t)(SHA0_BLOCK_SIZE - left);
ctx->sha0_total += ilen;
if ((left > 0) && (remain_ilen >= fill)) {
/* Copy data at the end of the buffer */
memcpy(ctx->sha0_buffer + left, data_ptr, fill);
ret = sha0_process(ctx, ctx->sha0_buffer); EG(ret, err);
data_ptr += fill;
remain_ilen -= fill;
left = 0;
}
while (remain_ilen >= SHA0_BLOCK_SIZE) {
ret = sha0_process(ctx, data_ptr); EG(ret, err);
data_ptr += SHA0_BLOCK_SIZE;
remain_ilen -= SHA0_BLOCK_SIZE;
}
if (remain_ilen > 0) {
memcpy(ctx->sha0_buffer + left, data_ptr, remain_ilen);
}
ret = 0;
err:
return ret;
}
/* Finalize. Returns 0 on success, -1 on error.*/
int sha0_final(sha0_context *ctx, uint8_t output[SHA0_DIGEST_SIZE])
{
unsigned int block_present = 0;
uint8_t last_padded_block[2 * SHA0_BLOCK_SIZE];
int ret;
MUST_HAVE((output != NULL), ret, err);
SHA0_HASH_CHECK_INITIALIZED(ctx, ret, err);
/* Fill in our last block with zeroes */
memset(last_padded_block, 0, sizeof(last_padded_block));
/* This is our final step, so we proceed with the padding */
block_present = ctx->sha0_total % SHA0_BLOCK_SIZE;
if (block_present != 0) {
/* Copy what's left in our temporary context buffer */
memcpy(last_padded_block, ctx->sha0_buffer,
block_present);
}
/* Put the 0x80 byte, beginning of padding */
last_padded_block[block_present] = 0x80;
/* Handle possible additional block */
if (block_present > (SHA0_BLOCK_SIZE - 1 - sizeof(uint64_t))) {
/* We need an additional block */
PUT_UINT64_BE(8 * ctx->sha0_total, last_padded_block,
(2 * SHA0_BLOCK_SIZE) - sizeof(uint64_t));
ret = sha0_process(ctx, last_padded_block); EG(ret, err);
ret = sha0_process(ctx, last_padded_block + SHA0_BLOCK_SIZE); EG(ret, err);
} else {
/* We do not need an additional block */
PUT_UINT64_BE(8 * ctx->sha0_total, last_padded_block,
SHA0_BLOCK_SIZE - sizeof(uint64_t));
ret = sha0_process(ctx, last_padded_block); EG(ret, err);
}
/* Output the hash result */
PUT_UINT32_BE(ctx->sha0_state[0], output, 0);
PUT_UINT32_BE(ctx->sha0_state[1], output, 4);
PUT_UINT32_BE(ctx->sha0_state[2], output, 8);
PUT_UINT32_BE(ctx->sha0_state[3], output, 12);
PUT_UINT32_BE(ctx->sha0_state[4], output, 16);
/* Tell that we are uninitialized */
ctx->magic = (uint64_t)0;
ret = 0;
err:
return ret;
}
/*
* Scattered version performing init/update/finalize on a vector of buffers
* 'inputs' with the length of each buffer passed via 'ilens'. The function
* loops on pointers in 'inputs' until it finds a NULL pointer. The function
* returns 0 on success, -1 on error.
*/
int sha0_scattered(const uint8_t **inputs, const uint32_t *ilens,
uint8_t output[SHA0_DIGEST_SIZE])
{
sha0_context ctx;
int ret, pos = 0;
MUST_HAVE((inputs != NULL) && (ilens != NULL) && (output != NULL), ret, err);
ret = sha0_init(&ctx); EG(ret, err);
while (inputs[pos] != NULL) {
ret = sha0_update(&ctx, inputs[pos], ilens[pos]); EG(ret, err);
pos += 1;
}
ret = sha0_final(&ctx, output);
err:
return ret;
}
/*
* Single call version performing init/update/final on given input.
* Returns 0 on success, -1 on error.
*/
int sha0(const uint8_t *input, uint32_t ilen, uint8_t output[SHA0_DIGEST_SIZE])
{
sha0_context ctx;
int ret;
ret = sha0_init(&ctx); EG(ret, err);
ret = sha0_update(&ctx, input, ilen); EG(ret, err);
ret = sha0_final(&ctx, output);
err:
return ret;
}
#else
/*
* Dummy definition to avoid the empty translation unit ISO C warning
*/
typedef int dummy;
#endif