-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNeuroMario.py
354 lines (298 loc) · 12.3 KB
/
NeuroMario.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import os
import sys
import argparse
import scipy.optimize as optimize
import pickle
import socket
from Emuhawk import Emuhawk
from MachineLearning import MachineLearning
from GameServer import GameServer
from Learn import Learn
from Joypad import get_missing_values
import utils
def workflow_learn(args, index=-2, seed=42, modelname='model_binary_crossentropy_keras.optimizers.Adam_sigmoid'):
"""
:param args: argparse object, overwerites modelname
:param index: which layer of the network is optimized
:param seed: int, passed as seed to differential_evolution
:param modelname: string, the model to load, .json/.weights.h5 is appended automatically
:return:
"""
if args.model is not None:
modelname = args.model
model = utils.load_model(modelname)
learn = Learn(model, index, args)
bounds = []
weights = model.get_weights()[index].flatten()
for i in range(weights.size):
_max = max(abs(weights[i]), 0.1)
_min = min(-_max, -0.1)
bounds.append((_min, _max))
if args.workers == -1:
args.workers = os.cpu_count()
optimize.differential_evolution(learn.learn, bounds, seed=seed, workers=args.workers)
def find_best_score(_):
"""
:return:
"""
best_score = None
best_weight = None
full_dir = os.path.join(os.getcwd(), 'weights')
all_filenames = os.listdir(full_dir)
for filename in all_filenames:
if filename.endswith('.txt'):
with open(os.path.join(full_dir, filename), 'r') as f:
new_score = f.read()
new_score = float(new_score)
if new_score < best_score:
new_filename = filename.replace('.txt', '.weights')
for weights_file in all_filenames:
if weights_file.startswith(new_filename):
best_score = new_score
best_weight = os.path.join(os.getcwd(), 'weights', weights_file)
break
print(best_score, best_weight)
if best_score is None or best_weight is None:
raise ValueError('failed to find best score or weight, check if the folder "weights" is not empty')
return best_score, best_weight
def replay(args, best=True, modelname='model_binary_crossentropy_keras.optimizers.Adam_sigmoid'):
"""
:param args: argparse object
:param best: boolean, True, the best model will be played, False, the first model will be played
:param modelname: string, the name of the model, .json/_weights.h5 will be automatically attached
:return: None
"""
model = utils.load_model(modelname)
if best:
best_score, best_weight = find_best_score('')
index = int(best_weight.split('weights')[-1])
weights = model.get_weights()
with open(best_weight, 'rb') as f:
weights[index] = pickle.load(f).reshape(weights[index].shape)
model.set_weights(weights)
g = GameServer(socket_autostart=True,
socket_ip=socket.gethostbyname(socket.gethostname()),
socket_port=9000 + os.getpid() % 1000)
e = Emuhawk(socket_ip=g.server.ip,
socket_port=g.server.port,
lua_script=os.path.join(os.getcwd(), 'lua/listen_socket_screenshot.lua'))
e.state = os.path.join(os.getcwd(), args.state)
e.start()
g.server.create_connection(timeout=30)
missing = get_missing_values(model)
score = g.ai(method='socket',
model=model,
missing=missing,
threshold=args.play_threshold)
if best:
assert score == best_score, 'Best score {} did not match achieved score'.format(best_score, score)
def replay_best(args):
"""
Replays the best learned model
:return: None
"""
replay(args, best=True)
def replay_initial(args):
"""
Replays the initial neural net work
:return: None
"""
replay(args, best=False)
def build_model(args):
"""
Builds a neural network based on the input files present in movies_images
:param args:
:return:
"""
ml = MachineLearning()
print('reading input files')
if args.pickle_files is None or not os.path.isfile(args.pickle_files[0]) or not os.path.isfile(args.pickle_files[1]):
for direc in os.listdir(os.path.join(os.getcwd(), 'movies_images')):
dir_name = os.path.join(os.getcwd(), 'movies_images', direc)
if direc.endswith('bk2') and os.path.isdir(dir_name):
ml.add_dir(dir_name)
print(ml.image_files[0])
print(ml.image_files[-1])
print('building input and output')
ml.input_output(normalize=args.normalize, mirror=args.mirror,
bit_array=args.bit_array, pickle_files=args.pickle_files)
print('dropping unused output columns')
new_output, dropped = ml.remove_empty_columns(ml.output, args.drop_threshold)
print(dropped)
ml.output = new_output
print('training model')
if args.model is not None:
modelname = args.model
else:
modelname = 'default'
ml.neural_net(modelname=modelname, activation=args.activation, epochs=args.epochs, loss=args.loss)
print('created model: {}'.format(modelname))
return ml
def play(args=None, state=None, modelname=None):
"""
Plays a specific state with a model
:param args: parsed arguments from argparse, will overwrite state and modelname
:param state: string, the name of the state which is loaded in Emuhawk
:param modelname: string, the name of the model is loaded (without .json or .weights)
:return: None
"""
if args is not None:
state = args.state
modelname = args.model
if state is None or modelname is None:
raise ValueError('state and modelname (filename of existing model) is required')
model = utils.load_model(modelname)
g = GameServer(socket_autostart=True,
socket_ip=socket.gethostbyname(socket.gethostname()),
socket_port=9000 + os.getpid() % 1000)
print('initialized gameserver')
if args.lua in ('', None):
lua_script = 'lua/listen_socket_screenshot.lua'
else:
lua_script = args.lua
e = Emuhawk(socket_ip=g.server.ip,
socket_port=g.server.port,
lua_script=os.path.join(os.getcwd(), lua_script))
print('initialized emuhawk')
if not os.path.isfile(state):
state = os.path.join(os.getcwd(), state)
e.state = state
e.start()
print('started emuhawk')
g.server.create_connection(timeout=60)
missing = get_missing_values(model)
print('created connection')
return g.ai(method='socket',
model=model,
missing=missing,
threshold=args.play_threshold,
bit_array=args.bit_array,
on_img_error=utils.msg_to_time)
def test_model(args):
"""
:param args: parsed arguments from argparse
:return: None
"""
modelname = args.model
model = utils.load_model(modelname)
ml = MachineLearning()
ml.model = model
ml.test_neural_net()
def replay_with_weights(args):
model = utils.load_model(args.model)
with open(args.weights, 'rb') as f:
weights = pickle.load(f)
_weights = model.get_weights()
_weights[-2] = weights
model.set_weights(_weights)
g = GameServer(socket_autostart=True,
socket_ip=socket.gethostbyname(socket.gethostname()),
socket_port=9000 + os.getpid() % 1000)
print('initialized gameserver')
e = Emuhawk(socket_ip=g.server.ip,
socket_port=g.server.port,
lua_script=os.path.join(os.getcwd(), args.lua))
print('initialized emuhawk')
state = os.path.join(os.getcwd(), args.state)
e.state = state
e.start()
print('started emuhawk')
g.server.create_connection(timeout=60)
missing = get_missing_values(model)
print('created connection')
return g.ai(method='socket',
model=model,
missing=missing,
threshold=args.play_threshold,
bit_array=args.bit_array,
on_img_error=utils.msg_to_time)
def parse_args(sys_args):
"""
Parse command line arguments and returns parsed arguments
:param sys_args: list, arguments coming from sys.argv
:return: None
"""
parser = argparse.ArgumentParser()
parser.add_argument("command", choices=('learn', 'replay_best', 'replay_initial', 'find_best_score', 'build_model',
'play', 'test', 'clean', 'create_state', 'replay_with_weights'))
parser.add_argument("--model", default=None, type=str)
parser.add_argument("--state", default='states/GhostValley_2.State', type=str)
parser.add_argument("--activation", default='sigmoid', type=str)
parser.add_argument("--epochs", default=10, type=int)
parser.add_argument("--loss", default='categorical_crossentropy', type=str)
parser.add_argument("--drop_threshold", default=0.01, type=float)
parser.add_argument("--play_threshold", default=0.5, type=float)
parser.add_argument("--normalize", default=True, type=lambda s: s.lower() in ['true', 't', 'yes', '1'])
parser.add_argument("--mirror", default=True, type=lambda s: s.lower() in ['true', 't', 'yes', '1'])
parser.add_argument("--bit_array", default=True, type=lambda s: s.lower() in ['true', 't', 'yes', '1'])
parser.add_argument("--directory", default='weights_states/MarioCircuitI.State', type=str)
parser.add_argument("--suffix", default='.weights-2', type=str)
parser.add_argument("--gametype", default='1P', choices=['1P', '2P'])
parser.add_argument("--racetype", default='Time Trial', type=str)
parser.add_argument("--player", default='Mario', type=str)
parser.add_argument("--cc_class", default=None, choices=[None, 50, 100, 150])
parser.add_argument("--cup", default='MUSHROOM CUP', type=str)
parser.add_argument("--track", default='GHOST VALLEY 1', type=str)
parser.add_argument("--filename", type=str)
parser.add_argument("--pickle_files", default=None, nargs=2)
parser.add_argument("--workers", default=1, type=str)
parser.add_argument("--bizhawk_config", default='', type=str)
parser.add_argument('--lua', default=None, type=str)
parser.add_argument('--weights', default=None, type=str)
parser.add_argument('--predict_finishline', default=False, type=lambda s: s.lower() in ['true', 't', 'yes', '1'])
args = parser.parse_args(sys_args)
return args
def clean_up(args):
"""
:param args: argparser object
:return: None
"""
print('cleaning')
utils.delete_all_good_runs(direc=args.directory, suffix=args.suffix)
utils.write_false_positives()
def create_state(args):
"""
Calls Emuhawk.create_create_defined_state to create a defined input state
:param args:
:return: None
"""
"""
def create_defined_state(self, gametype='1P', racetype='Time Trial', player='Mario', cc_class=None,
cup='MUSHROOM CUP', track='GHOST VALLEY 1',
filename_movie=None, auto_start=True):
"""
g = GameServer(socket_autostart=True,
socket_ip=socket.gethostbyname(socket.gethostname()),
socket_port=9000 + os.getpid() % 1000)
e = Emuhawk(socket_ip=g.server.ip,
socket_port=g.server.port)
e.create_defined_state(gametype=args.gametype,
racetype=args.racetype,
player=args.player,
cc_class=args.cc_class,
cup=args.cup,
track=args.track,
filename_movie=args.filename)
def main(args):
"""
Main function used to encapsulated different workflow
:param args: list, coming from sys.argv
:return: None
"""
command_to_function = {
'learn': workflow_learn,
'replay_best': replay_best,
'replay_initial': replay_initial,
'find_best_score': find_best_score,
'replay_with_weights': replay_with_weights,
'build_model': build_model,
'play': play,
'create_state': create_state
}
function = command_to_function[args.command]
return function(args)
if __name__ == '__main__':
args = parse_args(sys.argv[1:])
if args is None:
sys.exit(1)
print(main(args))