forked from RUC-NLPIR/FlashRAG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.py
512 lines (397 loc) · 17.9 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
import re
import warnings
from collections import Counter
from flashrag.evaluator.utils import normalize_answer
class BaseMetric:
"""`BaseMetric` serves as the base object of all metrics. Implemented metric should
inherit this class.
"""
metric_name = "base"
def __init__(self, config):
self.config = config
self.dataset_name = config["dataset_name"]
def calculate_metric(self, data):
"""Get the total score of this metric and score for each sample.
Args:
data object: it contains basic information and generated information.
Returns:
(metric_score: dict, metric_score_list: list)
metric_score: such as ``{'em': 0.53}``.
metric_score_list: score for each sample.
"""
return {}, []
def get_dataset_answer(self, data):
if any(choice == [] for choice in data.choices):
golden_answers_list = data.golden_answers
else:
# multi-choice dataset
all_choices_list = data.choices
golden_choice_idx_list = data.golden_answers
golden_answers_list = [
[choices[idx] for idx in idx_list]
for choices, idx_list in zip(all_choices_list, golden_choice_idx_list)
]
return golden_answers_list
class F1_Score(BaseMetric):
"""Token-level F1 score"""
metric_name = "f1"
def __init__(self, config):
super().__init__(config)
def token_level_scores(self, prediction: str, ground_truths: list):
final_metric = {"f1": 0, "precision": 0, "recall": 0}
if isinstance(ground_truths, str):
ground_truths = [ground_truths]
for ground_truth in ground_truths:
normalized_prediction = normalize_answer(prediction)
normalized_ground_truth = normalize_answer(ground_truth)
if normalized_prediction in ["yes", "no", "noanswer"] and normalized_prediction != normalized_ground_truth:
continue
if (
normalized_ground_truth in ["yes", "no", "noanswer"]
and normalized_prediction != normalized_ground_truth
):
continue
prediction_tokens = normalized_prediction.split()
ground_truth_tokens = normalized_ground_truth.split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
continue
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
for k in ["f1", "precision", "recall"]:
final_metric[k] = max(eval(k), final_metric[k])
return final_metric
def calculate_metric(self, data):
pred_list = data.pred
golden_answers_list = self.get_dataset_answer(data)
metric_score_list = [
self.token_level_scores(pred, golden_answers)["f1"]
for pred, golden_answers in zip(pred_list, golden_answers_list)
]
f1 = sum(metric_score_list) / len(metric_score_list)
return {"f1": f1}, metric_score_list
class Recall_Score(F1_Score):
"""Token-level Recall score"""
metric_name = "recall"
def __init__(self, config):
super().__init__(config)
def calculate_metric(self, data):
pred_list = data.pred
golden_answers_list = self.get_dataset_answer(data)
metric_score_list = [
self.token_level_scores(pred, golden_answers)["recall"]
for pred, golden_answers in zip(pred_list, golden_answers_list)
]
precision = sum(metric_score_list) / len(metric_score_list)
return {"recall": precision}, metric_score_list
class Precision_Score(F1_Score):
"""Token-level Precision score"""
metric_name = "precision"
def __init__(self, config):
super().__init__(config)
def calculate_metric(self, data):
pred_list = data.pred
golden_answers_list = self.get_dataset_answer(data)
metric_score_list = [
self.token_level_scores(pred, golden_answers)["precision"]
for pred, golden_answers in zip(pred_list, golden_answers_list)
]
precision = sum(metric_score_list) / len(metric_score_list)
return {"precision": precision}, metric_score_list
class ExactMatch(BaseMetric):
r"""Exact match measure whether the predicted answer is completely consistent
with the standard answer.
"""
metric_name = "em"
def __init__(self, config):
super().__init__(config)
self.is_regex = self.dataset_name == "curatedtrec"
def calculate_em(self, prediction: str, golden_answers: list) -> float:
if isinstance(golden_answers, str):
golden_answers = [golden_answers]
normalized_prediction = normalize_answer(prediction)
score = 0.0
for golden_answer in golden_answers:
if self.is_regex:
print("Consider answer as regex!")
golden_answer = re.compile(golden_answer, re.IGNORECASE)
match = re.fullmatch(golden_answer, normalized_prediction)
if match is not None:
score = 1.0
break
else:
golden_answer = normalize_answer(golden_answer)
if golden_answer == normalized_prediction:
score = 1.0
break
return score
def calculate_metric(self, data):
pred_list = data.pred
golden_answers_list = self.get_dataset_answer(data)
metric_score_list = [
self.calculate_em(pred, golden_answers) for pred, golden_answers in zip(pred_list, golden_answers_list)
]
em_score = sum(metric_score_list) / len(metric_score_list)
return {"em": em_score}, metric_score_list
class Sub_ExactMatch(BaseMetric):
r"""Sub-Exact match measure whether the predicted answer contains the standard answer."""
metric_name = "acc"
def __init__(self, config):
super().__init__(config)
self.is_regex = self.dataset_name == "curatedtrec"
def calculate_sub_em(self, prediction: str, golden_answers: list) -> float:
if isinstance(golden_answers, str):
golden_answers = [golden_answers]
normalized_prediction = normalize_answer(prediction)
score = 0.0
for golden_answer in golden_answers:
if self.is_regex:
print("Consider answer as regex!")
golden_answer = re.compile(golden_answer, re.IGNORECASE)
match = re.search(golden_answer, normalized_prediction)
if match is not None:
score = 1.0
break
else:
golden_answer = normalize_answer(golden_answer)
if golden_answer in normalized_prediction:
score = 1.0
break
return score
def calculate_metric(self, data):
golden_answers_list = self.get_dataset_answer(data)
pred_list = data.pred
metric_score_list = [
self.calculate_sub_em(pred, golden_answers) for pred, golden_answers in zip(pred_list, golden_answers_list)
]
sub_em_score = sum(metric_score_list) / len(metric_score_list)
return {"acc": sub_em_score}, metric_score_list
class Retrieval_Recall(BaseMetric):
r"""The recall of the top-k retreived passages, we measure if any of the passage contain the answer string."""
metric_name = "retrieval_recall"
def __init__(self, config):
super().__init__(config)
self.topk = config["metric_setting"]["retrieval_recall_topk"]
def calculate_metric(self, data):
golden_answers_list = self.get_dataset_answer(data)
retrieve_docs = data.retrieval_result
recall_score_list = []
for doc_list, golden_answers in zip(retrieve_docs, golden_answers_list):
if len(doc_list) < self.topk:
warnings.warn(f"Length of retrieved docs is smaller than topk ({self.topk})")
doc_list = [doc["contents"] for doc in doc_list[: self.topk]]
hit_list = []
for doc in doc_list:
for golden_answer in golden_answers:
if normalize_answer(golden_answer) in normalize_answer(doc):
hit_list.append(True)
break
else:
hit_list.append(False)
score = 1 if any(hit_list) else 0
recall_score_list.append(score)
recall_score = sum(recall_score_list) / len(recall_score_list)
return {f"retrieval_recall_top{self.topk}": recall_score}, recall_score_list
class Retrieval_Precision(BaseMetric):
r"""The precision of the top-k retreived passages, we measure if any of the passage contain the answer string."""
metric_name = "retrieval_precision"
def __init__(self, config):
super().__init__(config)
self.topk = config["metric_setting"]["retrieval_recall_topk"]
def calculate_metric(self, data):
golden_answers_list = self.get_dataset_answer(data)
retrieve_docs = data.retrieval_result
precision_score_list = []
for doc_list, golden_answers in zip(retrieve_docs, golden_answers_list):
if len(doc_list) < self.topk:
warnings.warn(f"Length of retrieved docs is smaller than topk ({self.topk})")
doc_list = [doc["contents"] for doc in doc_list[: self.topk]]
hit_list = []
for doc in doc_list:
for golden_answer in golden_answers:
if normalize_answer(golden_answer) in normalize_answer(doc):
hit_list.append(True)
break
else:
hit_list.append(False)
score = sum(hit_list) / len(hit_list)
precision_score_list.append(score)
precision_score = sum(precision_score_list) / len(precision_score_list)
return {f"retrieval_precision_top{self.topk}": precision_score}, precision_score_list
class Rouge_Score(BaseMetric):
metric_name = "rouge_score"
cached_scores = {}
def __init__(self, config):
super().__init__(config)
from rouge import Rouge
self.scorer = Rouge()
def calculate_rouge(self, pred, golden_answers):
if (pred, tuple(golden_answers)) in self.cached_scores:
return self.cached_scores[(pred, tuple(golden_answers))]
output = {}
for answer in golden_answers:
scores = self.scorer.get_scores(pred, answer)
for key in ["rouge-1", "rouge-2", "rouge-l"]:
if key not in output:
output[key] = []
output[key].append(scores[0][key]["f"])
for k, v in output.items():
output[k] = max(v)
self.cached_scores[(pred, tuple(golden_answers))] = output
return output
class Rouge_1(Rouge_Score):
metric_name = "rouge-1"
def __init__(self, config):
super().__init__(config)
def calculate_metric(self, data):
golden_answers_list = self.get_dataset_answer(data)
pred_list = data.pred
metric_score_list = [
self.calculate_rouge(pred, golden_answers)["rouge-1"]
for pred, golden_answers in zip(pred_list, golden_answers_list)
]
score = sum(metric_score_list) / len(metric_score_list)
return {"rouge-1": score}, metric_score_list
class Rouge_2(Rouge_Score):
metric_name = "rouge-2"
def __init__(self, config):
super().__init__(config)
def calculate_metric(self, data):
golden_answers_list = self.get_dataset_answer(data)
pred_list = data.pred
metric_score_list = [
self.calculate_rouge(pred, golden_answers)["rouge-2"]
for pred, golden_answers in zip(pred_list, golden_answers_list)
]
score = sum(metric_score_list) / len(metric_score_list)
return {"rouge-2": score}, metric_score_list
class Rouge_L(Rouge_Score):
metric_name = "rouge-l"
def __init__(self, config):
super().__init__(config)
def calculate_metric(self, data):
golden_answers_list = self.get_dataset_answer(data)
pred_list = data.pred
metric_score_list = [
self.calculate_rouge(pred, golden_answers)["rouge-l"]
for pred, golden_answers in zip(pred_list, golden_answers_list)
]
score = sum(metric_score_list) / len(metric_score_list)
return {"rouge-l": score}, metric_score_list
class BLEU(BaseMetric):
metric_name = "bleu"
def __init__(self, config):
super().__init__(config)
from ._bleu import Tokenizer13a
self.tokenizer = Tokenizer13a()
self.max_order = config["metric_setting"].get("bleu_max_order", 4)
self.smooth = config["metric_setting"].get("bleu_smooth", False)
def calculate_metric(self, data):
from ._bleu import compute_bleu
golden_answers_list = self.get_dataset_answer(data)
pred_list = data.pred
pred_list = [self.tokenizer(pred) for pred in pred_list]
golden_answers_list = [
[self.tokenizer(ans) for ans in golden_answers] for golden_answers in golden_answers_list
]
score = compute_bleu(
reference_corpus=golden_answers_list,
translation_corpus=pred_list,
max_order=self.max_order,
smooth=self.smooth,
)
(total_bleu, precisions, bp, ratio, translation_length, reference_length) = score
score_list = []
for pred, golden_answers in zip(pred_list, golden_answers_list):
pred = [pred]
golden_answers = [golden_answers]
score = compute_bleu(
reference_corpus=golden_answers,
translation_corpus=pred,
max_order=self.max_order,
smooth=self.smooth,
)
(bleu, precisions, bp, ratio, translation_length, reference_length) = score
score_list.append(bleu)
return {"bleu": total_bleu}, score_list
class LLMJudge(BaseMetric):
metric_name = "llm_judge"
JUDGE_PROMPT = """
You will be given a user_question and system_answer couple.
Your task is to provide a 'total rating' scoring how well the system_answer answers the user concerns expressed in the user_question.
Give your answer as a float on a scale of 0 to 10, where 0 means that the system_answer is not helpful at all, and 10 means that the answer completely and helpfully addresses the question.
Provide your feedback as follows:
Feedback:::
Total rating: (your rating, as a float between 0 and 10)
Now here are the question and answer.
Question: {question}
Answer: {answer}
Feedback:::
Total rating: """
def __init__(self, config):
super().__init__(config)
if "llm_judge_setting" in config["metric_setting"]:
llm_setting = config["metric_setting"]["llm_judge_setting"]
else:
assert False, "No available LLM settings!"
# TODO: integrate generator class
llm_name = llm_setting["model_name"]
if "model_path" not in llm_setting:
model_path = config["model2path"].get(llm_name, None)
else:
model_path = llm_setting["model_path"]
if model_path is None:
assert False, "None model path "
from transformers import pipeline
self.llm_pipeline = pipeline("text2text-generation", model=model_path, device=0)
def extract_judge_score(answer: str, split_str: str = "Total rating:") -> int:
try:
if split_str in answer:
rating = answer.split(split_str)[1]
else:
rating = answer
digit_groups = [el.strip() for el in re.findall(r"\d+(?:\.\d+)?", rating)]
return float(digit_groups[0])
except Exception as e:
print(e)
return 0
def calculate_metric(self, data):
question_list = data.question
pred_list = data.pred
judge_input_prompt = [self.JUDGE_PROMPT.format(question=q, answer=a) for q, a in zip(question_list, pred_list)]
judge_output = self.llm_pipeline(judge_input_prompt, max_new_tokens=100, batch_size=8)
judge_output = [item["generated_text"] for item in judge_output]
metric_score_list = [self.extract_judge_score(o) for o in judge_output]
# rescale score
metric_score_list = [score / 10 + 1 for score in metric_score_list]
score = sum(metric_score_list) / len(metric_score_list)
return {"llm_judge_score": score}, metric_score_list
class CountToken(BaseMetric):
metric_name = "input_tokens"
def __init__(self, config):
super().__init__(config)
tokenizer_name = config["metric_setting"].get("tokenizer_name", None)
is_hf_tokenizer = True
from flashrag.utils.constants import OPENAI_MODEL_DICT
if tokenizer_name is None or tokenizer_name in OPENAI_MODEL_DICT:
# use gpt4 tokenizer
import tiktoken
if tokenizer_name is None:
tokenizer_name = "gpt-4"
tokenizer = tiktoken.encoding_for_model(tokenizer_name)
is_hf_tokenizer = False
else:
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
self.tokenizer = tokenizer
self.is_hf_tokenizer = is_hf_tokenizer
def calculate_metric(self, data):
input_prompts = data.prompt
if self.is_hf_tokenizer:
token_counts = [len(self.tokenizer.tokenize(text)) for text in input_prompts]
else:
token_counts = [len(self.tokenizer.encode(text)) for text in input_prompts]
avg_tokens = sum(token_counts) / len(token_counts)
return {"avg_input_tokens": avg_tokens}, token_counts