-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
29 lines (22 loc) · 841 Bytes
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# main.py
import numpy as np
import pandas as pd
from data_preprocessing import load_and_preprocess_data
from evaluation import evaluate_models
from neural_networks import get_neural_network_models
from classification_methods import get_classification_models
def main():
# Load and preprocess data
X, y = load_and_preprocess_data('data/sonar_data.csv')
# Define models
nn_models = get_neural_network_models(input_dim=X.shape[1])
classification_models = get_classification_models()
# Combine all models
all_models = {**nn_models, **classification_models}
# Evaluate models
results = evaluate_models(all_models, X, y, n_splits=100, test_size=50)
# Save results
results.to_csv('results/accuracy_table.csv', index=False)
print(results)
if __name__ == "__main__":
main()