-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.py
37 lines (30 loc) · 1.34 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# utils/evaluation.py
import numpy as np
import pandas as pd
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.metrics import accuracy_score
def evaluate_models(models, X, y, n_splits=100, test_size=50):
results = []
sss = StratifiedShuffleSplit(n_splits=n_splits, test_size=test_size, random_state=42)
for model_name, model_func in models.items():
accuracies = []
for train_index, test_index in sss.split(X, y):
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
if 'NN_' in model_name:
# Neural Network
model = model_func()
model.fit(X_train, y_train, epochs=50, batch_size=8, verbose=0)
y_pred = (model.predict(X_test) > 0.5).astype("int32")
y_pred = y_pred.flatten()
else:
# Classical Methods
model = model_func
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
acc = accuracy_score(y_test, y_pred)
accuracies.append(acc)
avg_accuracy = np.mean(accuracies)
results.append({'Model': model_name, 'Average Accuracy': avg_accuracy})
results_df = pd.DataFrame(results)
return results_df