-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathenv.py
167 lines (139 loc) · 6.12 KB
/
env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# mtrec env
import gym
import pandas as pd
import numpy as np
from collections import defaultdict
from train.utils import Catemapper
class Visitor:
def __init__(self, session, reward_type="norm"):
self.session = session
self.reward_type = reward_type
self.states = session['states']
self.state = self.states[0] # initial state
self.labels = session['labels']
self.session_len = min(self.states.shape[0],self.labels.shape[0])
self.timestep = 0
def step(self, action):
t = self.timestep
label = self.labels[t]
cvaction = np.array([action[0], action[1]]) # CTR/CTCVR accu
# cvaction = np.array([action[0], action[0]*action[1]]) # CTR/CVR accu
# TODO: weighted reward
# reward = np.clip(1 - abs(cvaction - label), 0, 1)
reward = -np.abs(cvaction - label)
# BCE reward
if self.reward_type == "bce":
reward = label*np.log(np.clip(cvaction,1e-4,1))+(1-label)*np.log(np.clip(1-cvaction,1e-4,1))
# print(action,cvaction, reward)
if t + 1 < self.session_len:
nstate = self.states[t + 1]
done = False
else:
nstate = self.states[t]
done = True
self.timestep += 1
return nstate, reward, done, label
def __len__(self):
return self.labels.shape[0]
def __str__(self):
print(self.session)
class seqVisitor(Visitor):
def __init__(self, session):
super(seqVisitor, self).__init__(session)
self.session = session
self.states = session['states']
self.state = self.states[[0]] # initial state
self.labels = session['labels']
self.session_len = self.labels.shape[0]
self.timestep = 0
def step(self, action):
t = self.timestep
label = self.labels[t]
# 注意这里要改,或者额外弄个环境
cvaction = np.array([action[0], action[0]*action[1]]) # CTR/CTCVR accu
# TODO: sigle add 模型不需要限制范围
reward = np.clip(1 - abs(cvaction - label), 0, 1)
# print(action,cvaction, reward)
if t + 1 < self.session_len:
nstate = self.states[:(t + 2),:]
done = False
else:
nstate = self.states[:(t + 1),:]
done = True
self.timestep += 1
return nstate, reward, done, label
# class MTEnv(gym.Env):
class MTEnv(gym.Env):
def __init__(self, mdp_path, features_path, map_path, nrows=10000,reward_type="norm",is_test=False,is_seq=False):
super(MTEnv, self).__init__()
self.mdp_path = mdp_path
self.nrows = nrows
self.features_dict, self.idmap = self.get_features(features_path, map_path)
self.field_dims = self.idmap.field_dims
self.is_test = is_test
self.reward_type = reward_type
self.test_step = 0
self.is_seq = is_seq
self.action_space = gym.spaces.Box(0, 1, shape=(2,), dtype=np.float32) # 2维0-1, sample...
# self.observation_space = gym.spaces.Discrete() # t*feature_len, dynamic; hard to represent here
def get_features(self, features_path, map_path):
feature_cols = ['785', '591', '814', 'available', 'categoryid', '364', '776']
features = pd.read_csv(features_path, usecols=feature_cols + ['itemid'])
features.drop_duplicates('itemid', inplace=True)
features.fillna(0, inplace=True)
idmap = Catemapper(threshold=0.2)
idmap.load_mapper(map_path)
idmap.map(features)
features_dict = dict(zip(features['itemid'].tolist(), features[feature_cols].values))
return features_dict, idmap
def getMDP(self):
mdp_data = pd.read_csv(self.mdp_path, usecols=['timestamp', 'visitorid', 'itemid', 'click', 'pay',
'state', 'next_state'], nrows=self.nrows) # timestamp, itemid
len_items = len(self.features_dict)
self.visitors = mdp_data.visitorid.unique().tolist()
mdp_dataset = defaultdict(dict)
pad = [0]*self.field_dims.shape[0]
for i, d in mdp_data.groupby('visitorid'):
d.sort_values(by='timestamp', inplace=True)
labels = d[['click', 'pay']].values.astype(np.float32)
s = [self.features_dict[j[0]].tolist() if j[0] in self.features_dict else pad for j in eval(d['next_state'].tolist()[-1])]
cate_fea = np.array(s,dtype=np.int64)
# padding numerical feature
states = np.c_[cate_fea,np.zeros((cate_fea.shape[0],1))]
# print(labels.shape,states.shape)
mdp_dataset[i] = dict(
labels=labels,
states=states.astype(np.int64)
)
self.mdp_dataset = mdp_dataset
self.datalen = len(self.visitors)
print("visitors number:",len(self.visitors))
def reset(self):
visitorid = np.random.choice(self.visitors, size=1)[0]
if self.is_test:
visitorid = self.visitors[self.test_step%self.datalen]
self.test_step += 1
if self.is_seq:
self.cur_session = seqVisitor(self.mdp_dataset[visitorid])
else:
self.cur_session = Visitor(self.mdp_dataset[visitorid],self.reward_type)
return self.cur_session.state
def step(self, action): # offline behaviour, no need for action
nstate, reward, done, label = self.cur_session.step(action)
return nstate, reward, done, label
def render(self):
pass
if __name__ == '__main__':
data_path = "./dataset/train.csv"
features_path = "./dataset/rt/item_feadf.csv"
map_path = "./chkpt"
env = MTEnv(data_path, features_path, map_path, is_seq=False)
env.getMDP()
for i in range(10):
state = env.reset()
while True:
action = env.action_space.sample()
nstate, reward, done, _ = env.step(action)
print("nstate:{},reward:{}".format(nstate,reward))
if done:
break