forked from city96/ComfyUI-GGUF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathops.py
212 lines (180 loc) · 8.96 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# (c) City96 || Apache-2.0 (apache.org/licenses/LICENSE-2.0)
import gguf
import torch
import comfy.ops
import comfy.model_management
from .dequant import dequantize_tensor, is_quantized
class GGMLTensor(torch.Tensor):
"""
Main tensor-like class for storing quantized weights
"""
def __init__(self, *args, tensor_type, tensor_shape, patches=[], **kwargs):
super().__init__()
self.tensor_type = tensor_type
self.tensor_shape = tensor_shape
self.patches = patches
def __new__(cls, *args, tensor_type, tensor_shape, patches=[], **kwargs):
return super().__new__(cls, *args, **kwargs)
def to(self, *args, **kwargs):
new = super().to(*args, **kwargs)
new.tensor_type = getattr(self, "tensor_type", None)
new.tensor_shape = getattr(self, "tensor_shape", new.data.shape)
new.patches = getattr(self, "patches", []).copy()
return new
def clone(self, *args, **kwargs):
return self
def detach(self, *args, **kwargs):
return self
def copy_(self, *args, **kwargs):
# fixes .weight.copy_ in comfy/clip_model/CLIPTextModel
try:
return super().copy_(*args, **kwargs)
except Exception as e:
print(f"ignoring 'copy_' on tensor: {e}")
def __deepcopy__(self, *args, **kwargs):
# Intel Arc fix, ref#50
new = super().__deepcopy__(*args, **kwargs)
new.tensor_type = getattr(self, "tensor_type", None)
new.tensor_shape = getattr(self, "tensor_shape", new.data.shape)
new.patches = getattr(self, "patches", []).copy()
return new
@property
def shape(self):
if not hasattr(self, "tensor_shape"):
self.tensor_shape = self.size()
return self.tensor_shape
class GGMLLayer(torch.nn.Module):
"""
This (should) be responsible for de-quantizing on the fly
"""
comfy_cast_weights = True
dequant_dtype = None
patch_dtype = None
torch_compatible_tensor_types = {None, gguf.GGMLQuantizationType.F32, gguf.GGMLQuantizationType.F16}
def is_ggml_quantized(self, *, weight=None, bias=None):
if weight is None:
weight = self.weight
if bias is None:
bias = self.bias
return is_quantized(weight) or is_quantized(bias)
def _load_from_state_dict(self, state_dict, prefix, *args, **kwargs):
weight, bias = state_dict.get(f"{prefix}weight"), state_dict.get(f"{prefix}bias")
# NOTE: using modified load for linear due to not initializing on creation, see GGMLOps todo
if self.is_ggml_quantized(weight=weight, bias=bias) or isinstance(self, torch.nn.Linear):
return self.ggml_load_from_state_dict(state_dict, prefix, *args, **kwargs)
return super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
def ggml_load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
prefix_len = len(prefix)
for k,v in state_dict.items():
if k[prefix_len:] == "weight":
self.weight = torch.nn.Parameter(v, requires_grad=False)
elif k[prefix_len:] == "bias" and v is not None:
self.bias = torch.nn.Parameter(v, requires_grad=False)
else:
missing_keys.append(k)
def _save_to_state_dict(self, *args, **kwargs):
if self.is_ggml_quantized():
return self.ggml_save_to_state_dict(*args, **kwargs)
return super()._save_to_state_dict(*args, **kwargs)
def ggml_save_to_state_dict(self, destination, prefix, keep_vars):
# This is a fake state dict for vram estimation
weight = torch.zeros_like(self.weight, device=torch.device("meta"))
destination[prefix + "weight"] = weight
if self.bias is not None:
bias = torch.zeros_like(self.bias, device=torch.device("meta"))
destination[prefix + "bias"] = bias
return
# This would return the actual state dict
destination[prefix + "weight"] = self.get_weight(self.weight)
if bias is not None:
destination[prefix + "bias"] = self.get_weight(self.bias)
def get_weight(self, tensor, dtype):
if tensor is None:
return
# consolidate and load patches to GPU in async
patch_list = []
device = tensor.device
for function, patches, key in getattr(tensor, "patches", []):
patch_list += move_patch_to_device(patches, device)
# dequantize tensor while patches load
weight = dequantize_tensor(tensor, dtype, self.dequant_dtype)
# apply patches
if patch_list:
if self.patch_dtype is None:
weight = function(patch_list, weight, key)
else:
# for testing, may degrade image quality
patch_dtype = dtype if self.patch_dtype == "target" else self.patch_dtype
weight = function(patch_list, weight, key, patch_dtype)
return weight
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
if input is not None:
if dtype is None:
dtype = getattr(input, "dtype", torch.float32)
if bias_dtype is None:
bias_dtype = dtype
if device is None:
device = input.device
bias = None
non_blocking = comfy.model_management.device_supports_non_blocking(device)
if s.bias is not None:
bias = s.get_weight(s.bias.to(device), dtype)
bias = comfy.ops.cast_to(bias, bias_dtype, device, non_blocking=non_blocking, copy=False)
weight = s.get_weight(s.weight.to(device), dtype)
weight = comfy.ops.cast_to(weight, dtype, device, non_blocking=non_blocking, copy=False)
return weight, bias
def forward_comfy_cast_weights(self, input, *args, **kwargs):
if self.is_ggml_quantized():
return self.forward_ggml_cast_weights(input, *args, **kwargs)
return super().forward_comfy_cast_weights(input, *args, **kwargs)
def forward_ggml_cast_weights(self, input):
raise NotImplementedError
class GGMLOps(comfy.ops.manual_cast):
"""
Dequantize weights on the fly before doing the compute
"""
class Linear(GGMLLayer, comfy.ops.manual_cast.Linear):
def __init__(self, in_features, out_features, bias=True, device=None, dtype=None):
torch.nn.Module.__init__(self)
# TODO: better workaround for reserved memory spike on windows
# Issue is with `torch.empty` still reserving the full memory for the layer
# Windows doesn't over-commit memory so without this 24GB+ of pagefile is used
self.in_features = in_features
self.out_features = out_features
self.weight = None
self.bias = None
def forward_ggml_cast_weights(self, input):
weight, bias = self.cast_bias_weight(input)
return torch.nn.functional.linear(input, weight, bias)
class Conv2d(GGMLLayer, comfy.ops.manual_cast.Conv2d):
def forward_ggml_cast_weights(self, input):
weight, bias = self.cast_bias_weight(input)
return self._conv_forward(input, weight, bias)
class Embedding(GGMLLayer, comfy.ops.manual_cast.Embedding):
def forward_ggml_cast_weights(self, input, out_dtype=None):
output_dtype = out_dtype
if self.weight.dtype == torch.float16 or self.weight.dtype == torch.bfloat16:
out_dtype = None
weight, _bias = self.cast_bias_weight(self, device=input.device, dtype=out_dtype)
return torch.nn.functional.embedding(
input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse
).to(dtype=output_dtype)
class LayerNorm(GGMLLayer, comfy.ops.manual_cast.LayerNorm):
def forward_ggml_cast_weights(self, input):
if self.weight is None:
return super().forward_comfy_cast_weights(input)
weight, bias = self.cast_bias_weight(input)
return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
class GroupNorm(GGMLLayer, comfy.ops.manual_cast.GroupNorm):
def forward_ggml_cast_weights(self, input):
weight, bias = self.cast_bias_weight(input)
return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
def move_patch_to_device(item, device):
if isinstance(item, torch.Tensor):
return item.to(device, non_blocking=True)
elif isinstance(item, tuple):
return tuple(move_patch_to_device(x, device) for x in item)
elif isinstance(item, list):
return [move_patch_to_device(x, device) for x in item]
else:
return item