forked from datawhalechina/self-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path06-ChatGLM3-6B-Lora微调.py
74 lines (62 loc) · 2.66 KB
/
06-ChatGLM3-6B-Lora微调.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import torch
from datasets import Dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq, TrainingArguments, Trainer
import pandas as pd
from peft import TaskType, get_peft_model, LoraConfig
# 数据处理流程,参考GLM3仓库:https://github.com/THUDM/ChatGLM3/blob/main/finetune_chatmodel_demo/preprocess_utils
def process_func(example):
MAX_LENGTH = 512
input_ids, labels = [], []
instruction = tokenizer.encode(text="\n".join(["<|system|>", "现在你要扮演皇帝身边的女人--甄嬛", "<|user|>",
example["instruction"] + example["input"] + "<|assistant|>"]).strip() + "\n",
add_special_tokens=True, truncation=True, max_length=MAX_LENGTH)
response = tokenizer.encode(text=example["output"], add_special_tokens=False, truncation=True, max_length=MAX_LENGTH)
input_ids = instruction + response + [tokenizer.eos_token_id]
labels = [tokenizer.pad_token_id] * len(instruction) + response + [tokenizer.eos_token_id]
pad_len = MAX_LENGTH - len(input_ids)
# print()
input_ids += [tokenizer.pad_token_id] * pad_len
labels += [tokenizer.pad_token_id] * pad_len
labels = [(l if l != tokenizer.pad_token_id else -100) for l in labels]
return {
"input_ids": input_ids,
"labels": labels
}
args = TrainingArguments(
output_dir="./output/ChatGLM",
per_device_train_batch_size=1,
gradient_accumulation_steps=8,
logging_steps=20,
num_train_epochs=1
)
if "__main__" == __name__:
# 将JSON文件转换为CSV文件,处理数据集
df = pd.read_json('../dataset/huanhuan.jsonl')
ds = Dataset.from_pandas(df)
# 加载tokenizer
tokenizer = AutoTokenizer.from_pretrained("./model/chatglm3-6b", trust_remote_code=True)
# 将数据集变化为token形式
tokenized_ds = ds.map(process_func, remove_columns=ds.column_names)
# 创建模型
model = AutoModelForCausalLM.from_pretrained("./model/chatglm3-6b",torch_dtype=torch.half, trust_remote_code=True, low_cpu_mem_usage=True)
# 创建loRA参数
config = LoraConfig(task_type=TaskType.CAUSAL_LM, target_modules={"query_key_value"}, r=8, lora_alpha=32)
# 模型合并
model = get_peft_model(model, config)
# 指定GLM的Data collator
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=-100,
pad_to_multiple_of=None,
padding=False
)
# 指定训练参数。
trainer = Trainer(
model=model,
args=args,
train_dataset=tokenized_ds,
data_collator=data_collator,
)
# 开始训练
trainer.train()