-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathexperimental.py
47 lines (39 loc) · 2.13 KB
/
experimental.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
def create_admissible_solution(problem, variables, instance):
(Gs, Gf, Gn, LIn, LOn, IG, LI_indices, LO_indices, \
L_node_indices) = instance.get_indices()
(n_generators, n_scenarios, n_periods, n_lines, \
n_nodes, n_import_groups) = instance.get_sizes()
(PI, K, S, C, D, P_plus, P_minus, R_plus, R_minus, \
UT, DT, T_req, F_req, B, TC, FR, IC, GAMMA) = instance.get_constants()
(u, v, p, theta, w, z, e) = variables
variables = problem.get_variables()
int_mask = [var.name[0] in ["U", "W"] for var in variables]
solution = variables.get_var_values()
solution[int_mask] = np.round(solution[int_mask])
problem.set_var_values(solution)
n_violated, groups_n_violated = problem.constraints_violated()
print(n_violated)
for g in range(n_generators):
for s in range(n_scenarios):
for t in range(n_periods):
ll = P_plus[g, s] * u[g, s, t].varValue if random.random() < 0.5 else P_minus[g, s] * u[g, s, t].varValue
if p[g, s, t].varValue > P_plus[g, s] * u[g, s, t].varValue:
p[g, s, t].varValue = P_plus[g, s] * u[g, s, t].varValue
elif p[g, s, t].varValue < P_minus[g, s] * u[g, s, t].varValue:
p[g, s, t].varValue = P_minus[g, s] * u[g, s, t].varValue
subprob = SUCLpProblem("-", pulp.LpMinimize)
obj = C * np.swapaxes(p, 0, 2)
subprob += obj
subprob.set_constraint_group("3.21")
for n in range(n_nodes):
for s in range(n_scenarios):
for t in range(n_periods):
p_values = p[Gn[n], s, t].get_var_values() if isinstance(p[Gn[n], s, t], LpVarArray) else p[Gn[n], s, t].varValue
subprob += (np.sum(p[Gn[n], s, t], axis=0) == np.sum(p_values))
for g in range(n_generators):
subprob += (np.transpose(p, (2, 0, 1)) <= P_plus * np.transpose(u.get_var_values(), (2, 0, 1)))
subprob += (P_minus * np.transpose(u.get_var_values(), (2, 0, 1)) <= np.transpose(p, (2, 0, 1)))
subprob.solve()
print(subprob.status)
n_violated, groups_n_violated = subprob.constraints_violated()
print(n_violated)