-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathpredict.py
136 lines (113 loc) · 4.07 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import threading
import matplotlib.pyplot as plt
import os, time
import shutil
import numpy as np
import random
import tensorflow as tf
import copy
import time
import md_config as cfg
from feature_collection import FeatureCollection
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, TimeDistributed, GlobalAveragePooling1D, Activation, Concatenate, \
InputLayer, PReLU
config = tf.compat.v1.ConfigProto()
#config.gpu_options.allow_growth = True
session = tf.compat.v1.Session(config=config)
tf.compat.v1.keras.backend.set_session(session)
interval_duration = 10.0
def define_model(hparams, model_name):
current_n_lstms = hparams['NUM_LSTM_LAYERS']
current_lstm_units = hparams['LSTM_UNITS']
current_n_denses = hparams['NUM_DENSE_LAYERS']
current_dense_units = hparams['DENSE_UNITS']
current_dropout_rates = hparams['DROPOUT_RATES']
current_time_step = hparams['TIME_STEP']
current_input_units = hparams['INPUT_UNITS']
current_densen_act = hparams['ACTIVATION_F']
model = Sequential()
if hparams['FC1'][1] > 0:
model.add(TimeDistributed(Dense(hparams['FC1'][1], activation='relu'),
input_shape=(current_time_step, hparams['FC1'][0])))
model.add(
LSTM(current_lstm_units[0], return_sequences=True, input_shape=(current_time_step, current_input_units),
stateful=False))
if current_n_lstms > 1:
for idx in range(1, current_n_lstms):
model.add(LSTM(current_lstm_units[idx], return_sequences=True))
for idx in range(current_n_denses):
model.add(TimeDistributed(Dense(current_dense_units[idx], activation='relu')))
model.add(TimeDistributed(Dense(1, activation=current_densen_act)))
model.add(GlobalAveragePooling1D())
return model
def get_model(model_index, n_segments=15, input_units=60):
"""
Make prediction for data_npy
:param data_npy:
:return:
"""
ld_cfg = cfg.md_cfg
hparams = copy.deepcopy(ld_cfg[model_index])
ft_type = 'of'
hparams['TIME_STEP'] = n_segments
hparams['INPUT_UNITS'] = hparams['FC1'][1] if hparams['FC1'][1] > 0 else input_units
hparams['optimizer'] = 'adam'
hparams['ACTIVATION_F'] = 'tanh'
hparams['CLSW'] = 1
cur_model = define_model(hparams,hparams['NAME'])
cur_model.build()
cur_model.load_weights(
'./models/{}_{}_models_{}_{}_0_epochs{}_best_weight.h5'.format(hparams['model_path'], ft_type,
hparams['n_segments'], hparams['alpha'],
hparams['EPOCHS']))
return cur_model
def periodic_function():
duration = time.strftime("%M:%S", time.gmtime(int(time.time() - start_time)))
if os.path.isdir("../../OpenFace/build/processed"):
feature_extraction = FeatureCollection('../../OpenFace/build/processed')
ft = np.array(feature_extraction.get_all_data())
with session1.as_default():
with graph1.as_default():
v1 = eye_gaze_v1.predict(ft[0].reshape(1,15,60))
with session2.as_default():
with graph2.as_default():
v2 = eye_gaze_v2.predict(ft[0].reshape(1,15,60))
print('{} {}'.format(v1,v2))
enga_score = 0.5 * (v1 + v2)
print('engagement_score = {}'.format(enga_score))
x.append(duration)
if enga_score < 0.4:
y.append(0)
elif enga_score < 0.6:
y.append(1)
elif enga_score < 0.83:
y.append(2)
else:
y.append(3)
print(x)
print(y)
shutil.rmtree('../../OpenFace/build/processed', ignore_errors=True)
def startTimer():
threading.Timer(interval_duration,startTimer).start()
periodic_function()
if __name__ == '__main__':
x = []
y = []
graph1 = tf.Graph()
with graph1.as_default():
session1 = tf.compat.v1.Session()
with session1.as_default():
eye_gaze_v1 = get_model(model_index=0)
graph2 = tf.Graph()
with graph2.as_default():
session2 = tf.compat.v1.Session()
with session2.as_default():
eye_gaze_v2 = get_model(model_index=1)
start_time = time.time()
startTimer()
while True:
plt.yticks(np.arange(4), ('Disengaged', 'Barely Engaged', 'Engaged', 'Highly Engaged'))
plt.xticks(rotation=90)
plt.step(x, y, 'b')
plt.pause(1)