-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutilsGHomo.py
218 lines (173 loc) · 6.79 KB
/
utilsGHomo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn.utils import spectral_norm
import torch
from sklearn.model_selection import train_test_split
from torch.utils.data import TensorDataset, DataLoader
import numpy as np
from sklearn.metrics import roc_auc_score
from copy import deepcopy
from dataclasses import dataclass, asdict
import json
@dataclass
class Params:
num_sites: int = None
num_rounds: int = None
inner_epochs: int = None
batch_size: int = None
outer_lr: float = None
weight_decay: float = None
inner_lr: float = None
PARAMS_FILE = "params.json"
def save_params(run_path, params):
with open(f'{run_path}/{PARAMS_FILE}', "w") as f:
json.dump(asdict(params), f, indent=2)
def get_device():
if torch.cuda.is_available():
device=torch.device('cuda:0')
else:
device=torch.device('cpu')
return device
def combine_grads(G):
'''Given a list of client gradients, combine them for meta gradient'''
nodes = len(G)
keys = G[0].keys() # Because the keys should be the same for all models
Meta_grad = deepcopy(G[0])
for k in keys:
for i in range(1, nodes):
Meta_grad[k] += G[i][k]
Meta_grad[k] = Meta_grad[k]/nodes
return Meta_grad
from MakeGraph import *
# def prediction_binary(model,loader,loss_fn,device):
# P=[]
# L=[]
# model.eval()
# val_loss=0
# for i,batch in enumerate(loader):
# if i<len(loader)-1:
# data,labels=batch
# num_patients, num_features = data.shape
# g=MakegraphH(data).to(device)
# # print(g)
# g.ndata['feat'] = data.to(device)
# data=data.to(torch.float32).to(device)
# labels=labels.to(torch.float32).to(device)
# # pred=model(data)[:,0]
# pred = model(g, g.ndata['feat'].float())
# # print(pred)
# # pred=pred.squeeze(1)
# loss=loss_fn(pred,labels)
# val_loss=val_loss+loss.item()
# P.append(pred.cpu().detach().numpy())
# L.append(labels.cpu().detach().numpy())
# val_loss=val_loss/len(loader)
# P=np.concatenate(P)
# L=np.concatenate(L)
# auc=roc_auc_score(L,P)
# return val_loss,auc
def prediction_binary(model,loader,loss_fn,device):
P=[]
L=[]
model.eval()
val_loss=0
for i,batch in enumerate(loader):
if i<len(loader)-1:
data,labels=batch
num_patients, num_features = data.shape
g = MakegraphHT(data)
g = g.to(device)
# print(g)
# g.nodes['patient'].data['feat'] = data.to(device)
# data=data.to(torch.float32).to(device)
labels=labels.to(torch.float32).to(device)
# pred=model(data)[:,0]
pred = model(g.edge_index, g.x.float())
# print(pred)
# pred=pred.squeeze(1)
loss=loss_fn(pred,labels)
val_loss=val_loss+loss.item()
P.append(pred.cpu().detach().numpy())
L.append(labels.cpu().detach().numpy())
val_loss=val_loss/len(loader)
P=np.concatenate(P)
L=np.concatenate(L)
auc=roc_auc_score(L,P)
return val_loss,auc
from torch_geometric.data import DataLoader
from sklearn.metrics import roc_auc_score
import numpy as np
# def prediction_binaryT(model, loader, loss_fn, device):
# P = []
# L = []
# model.eval()
# val_loss = 0
# with torch.no_grad():
# for data, labels in loader:
# g = MakegraphHT(data).to(device)
# features = data.to(torch.float32).to(device)
# labels = labels.to(torch.float32).to(device)
# pred = model(g.edge_index, features)
# loss = loss_fn(pred, labels)
# val_loss += loss.item()
# P.append(pred.cpu().numpy())
# L.append(labels.cpu().numpy())
# val_loss /= len(loader)
# P = np.concatenate(P)
# L = np.concatenate(L)
# auc = roc_auc_score(L, P)
# return val_loss, auc
def prediction_binaryT(model, loader, loss_fn, device):
P = []
L = []
model.eval()
val_loss = 0
with torch.no_grad():
for data, labels in loader:
#************************************************************************
mean_original = data.mean()
std_dev_original = data.std()
normalized_data = (data - mean_original) / std_dev_original
# Resize the dataset to 64x64 by random sampling along the columns
indices = torch.randint(0, normalized_data.size(1), (100-data.shape[1],))
resized_data = normalized_data[:, indices]
resized_data=torch.cat((data, resized_data),axis=1)
# # Transform back to original scale (optional)
# resized_transformed_data = (resized_data * std_dev_original) + mean_original
#************************************************************************
g = MakegraphHT(resized_data).to(device)
features = resized_data.to(torch.float32).to(device)
labels = labels.to(torch.float32).to(device)
pred = model(g.edge_index, features)
loss = loss_fn(pred, labels)
val_loss += loss.item()
P.append(pred.cpu().numpy())
L.append(labels.cpu().numpy())
val_loss /= len(loader)
P = np.concatenate(P)
L = np.concatenate(L)
auc = roc_auc_score(L, P)
return val_loss, auc
def evaluate_modelsT(client_id, Loaders, net, TL, loss_fn, device, df, B, model_path, ae=False, ae_fl=None):
''' Given site i, and model net, evaluate the model peformance on the site's val set'''
tl1 = TL[client_id]
val_loss, val_auc = prediction_binaryT(net, Loaders[client_id][1], loss_fn, device)
if val_auc > B[client_id]:
B[client_id] = val_auc
torch.save(net, f'./trained_models/{model_path}/node{client_id}')
if ae_fl:
torch.save(ae_fl, f'./trained_models/AE_Unstructured/node{client_id}')
df = df.append({'Train_Loss': tl1, 'Val_Loss': val_loss, 'Val_AUC': val_auc}, ignore_index=True)
return df, B[client_id]
def evaluate_models(client_id, Loaders, net, TL, loss_fn, device, df, B, model_path, ae=False, ae_fl=None):
''' Given site i, and model net, evaluate the model peformance on the site's val set'''
tl1 = TL[client_id]
val_loss, val_auc = prediction_binary(net, Loaders[client_id][1], loss_fn, device)
if val_auc > B[client_id]:
B[client_id] = val_auc
torch.save(net, f'./trained_models/{model_path}/node{client_id}')
if ae_fl:
torch.save(ae_fl, f'./trained_models/AE_Unstructured/node{client_id}')
df = df.append({'Train_Loss': tl1, 'Val_Loss': val_loss, 'Val_AUC': val_auc}, ignore_index=True)
return df, B[client_id]