forked from clarkkev/deep-coref
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pairwise_models.py
220 lines (181 loc) · 10.2 KB
/
pairwise_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import directories
import timer
from custom_neural_implementations import Identity, get_summed_cross_entropy, get_sum
import numpy as np
import h5py
from keras.models import Sequential, Graph
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.embeddings import Embedding
def add_mention_reprs(graph, name, model_props):
spans = name + '_spans'
spans_reprs = name + '_spans_reprs'
pair_spans_reprs = 'pair_' + name + '_spans_reprs'
flattened_embeddings = name + '_embeddings_flattened'
pair_embeddings_dropped = 'pair_' + name + '_embeddings_dropped'
pair_embeddings_reprs = 'pair_' + name + '_embeddings_reprs'
reprs = 'pair_' + name + '_reprs'
mentions = name + 's'
pairs = 'pair_' + name + 's'
if model_props.use_spans:
# get relevant spans
graph.add_node(Identity(), name=spans, inputs=['spans', mentions], merge_mode='index')
# put through a fully connected layer
graph.add_node(Dense(model_props.layer_sizes[0], W_regularizer=model_props.get_regularizer()),
name=spans_reprs, input=spans)
# duplicate to make pairs
graph.add_node(Identity(), name=pair_spans_reprs, inputs=[spans_reprs, pairs],
merge_mode='index')
# get relevant words
graph.add_node(Identity(), name=flattened_embeddings,
inputs=['flattened_embeddings', mentions], merge_mode='index')
# duplicate and dropout
graph.add_node(Dropout(model_props.dropout), name=pair_embeddings_dropped,
inputs=[flattened_embeddings, pairs], merge_mode='index')
# put through fully connected layer (could do this before if no word dropout)
graph.add_node(Dense(model_props.layer_sizes[0], W_regularizer=model_props.get_regularizer()),
name=pair_embeddings_reprs if model_props.use_spans else reprs,
input=pair_embeddings_dropped)
# combine word and span representations to get mention representation
if model_props.use_spans:
graph.add_node(Identity(), name=reprs,
inputs=[pair_spans_reprs, pair_embeddings_reprs], merge_mode='sum')
def add_anaphoricity_reprs(graph, model_props):
spans = 'anaphoricity_spans'
spans_reprs = 'anaphoricity_spans_reprs'
flattened_embeddings = 'anaphoricity_embeddings_flattened'
embeddings_dropped = 'anaphoricity_embeddings_dropped'
embeddings_reprs = 'anaphoricity_embeddings_reprs'
reprs = 'anaphoricity_reprs'
mentions = 'anaphors'
anaphoricity_features = 'anaphoricity_reprs_features'
anaphoricity_features_reprs = 'anaphoricity_reprs_features_reprs'
if model_props.use_spans:
# get relevant spans
graph.add_node(Identity(), name=spans, inputs=['spans', mentions], merge_mode='index')
# put through a fully connected layer
graph.add_node(Dense(model_props.layer_sizes[0], W_regularizer=model_props.get_regularizer()),
name=spans_reprs, input=spans)
# get relevant words
graph.add_node(Identity(), name=flattened_embeddings,
inputs=['flattened_embeddings', mentions], merge_mode='index')
# dropout and put through fully connected layer
graph.add_node(Dropout(model_props.dropout),
name=embeddings_dropped, input=flattened_embeddings)
graph.add_node(Dense(model_props.layer_sizes[0], W_regularizer=model_props.get_regularizer()),
name=embeddings_reprs, input=embeddings_dropped)
# get additional mention features
graph.add_node(Identity(), name=anaphoricity_features, inputs=['mention_features', mentions],
merge_mode='index')
# put through fully connected layer
graph.add_node(Dense(model_props.layer_sizes[0], W_regularizer=model_props.get_regularizer()),
name=anaphoricity_features_reprs, input=anaphoricity_features)
# combine span, word, and additional features
graph.add_node(Identity(), name=reprs, inputs=[spans_reprs, embeddings_reprs,
anaphoricity_features_reprs], merge_mode='sum')
def get_top_layers(model_props, representation=False):
top_layers = Sequential()
top_layers.add(Activation(model_props.activation, input_shape=(model_props.layer_sizes[0],)))
for i in range(len(model_props.layer_sizes) - 1):
top_layers.add(Dropout(model_props.dropout))
top_layers.add(Dense(model_props.layer_sizes[i + 1], activation=model_props.activation,
W_regularizer=model_props.get_regularizer()))
if not representation:
top_layers.add(Dropout(model_props.dropout))
top_layers.add(Dense(1, W_regularizer=model_props.get_regularizer()))
top_layers.add(Dense(1, W_regularizer=model_props.get_regularizer(),
weights=[np.array([[1]]), np.array([0])]))
if not model_props.ranking:
top_layers.add(Activation('sigmoid'))
return top_layers
def get_embedding_layer(model_props, input_sizes, vectors):
return Embedding(vectors.shape[0], vectors.shape[1], weights=[vectors],
input_length=input_sizes['words'],
trainable=not model_props.freeze_embeddings)
def build_graph(train, vectors, model_props, representation=False):
input_sizes = {k: v.shape[1] for k, v in next(X for X in train).items() if v.ndim == 2}
graph = Graph()
graph.add_input(name='anaphors', input_shape=(1,), dtype='int32')
graph.add_input(name='words', input_shape=(input_sizes['words'],), dtype='int32')
graph.add_node(get_embedding_layer(model_props, input_sizes, vectors),
name='word_embeddings', input='words')
graph.add_node(Flatten(), name='flattened_embeddings', input='word_embeddings')
if model_props.use_spans:
graph.add_input(name='spans', input_shape=(input_sizes['spans'],))
if model_props.anaphoricity:
graph.add_input(name='mention_features', input_shape=(input_sizes['mention_features'],))
add_anaphoricity_reprs(graph, model_props)
graph.add_node(get_top_layers(model_props, representation), name='top_anaphoricity',
input='anaphoricity_reprs')
if not model_props.ranking:
graph.add_output(name='anaphoricities', input='top_anaphoricity')
if model_props.anaphoricity_only:
return graph
graph.add_input(name='antecedents', input_shape=(1,), dtype='int32')
graph.add_input(name='pair_antecedents', input_shape=(1,), dtype='int32')
graph.add_input(name='pair_anaphors', input_shape=(1,), dtype='int32')
graph.add_input(name='pair_features', input_shape=(input_sizes['pair_features'],))
add_mention_reprs(graph, 'antecedent', model_props)
add_mention_reprs(graph, 'anaphor', model_props)
graph.add_node(Dense(model_props.layer_sizes[0], W_regularizer=model_props.get_regularizer()),
name='pair_features_reprs', input='pair_features')
graph.add_node(get_top_layers(model_props, representation), name='top',
inputs=['pair_anaphor_reprs', 'pair_antecedent_reprs', 'pair_features_reprs'],
merge_mode='sum')
if model_props.top_pairs:
graph.add_input(name='score_inds', input_shape=(1,), dtype='int32')
graph.add_input(name='starts', input_shape=(1,), dtype='int32')
graph.add_input(name='ends', input_shape=(1,), dtype='int32')
graph.add_node(Identity(), name='reordered',
inputs=['top', 'score_inds'], merge_mode='index')
graph.add_node(Identity(), name='maxed_scores',
inputs=['reordered', 'starts', 'ends'], merge_mode='imax')
graph.add_output(name='y', input='maxed_scores')
elif model_props.ranking:
graph.add_input(name='reindex', input_shape=(1,), dtype='int32')
graph.add_input(name='starts', input_shape=(1,), dtype='int32')
graph.add_input(name='ends', input_shape=(1,), dtype='int32')
graph.add_input(name='costs', input_shape=(1,))
if model_props.anaphoricity:
graph.add_node(Activation(lambda x: -1 - 0.3 * x),
name='anaphoricity_scores', input='top_anaphoricity')
graph.add_node(Identity(), name='concatenated_scores',
inputs=['top', 'anaphoricity_scores'], concat_axis=0)
graph.add_node(Identity(), name='scores_reindexed',
inputs=['concatenated_scores', 'reindex'], merge_mode='index')
else:
graph.add_node(Identity(), name='scores_reindexed',
inputs=['top', 'reindex'], merge_mode='index')
graph.add_node(Identity(), name='anaphor_losses',
inputs=['scores_reindexed', 'starts', 'ends', 'costs'],
merge_mode='risk' if model_props.reinforce else 'mm')
graph.add_output(name='y', input='anaphor_losses')
graph.add_output(name='z', input='scores_reindexed')
else:
graph.add_output(name='y', input='top')
return graph
def set_weights(graph, weights_from, weights_file):
print("Setting weights from", weights_from)
graph.set_weights(get_weights(weights_from, weights_file))
def get_weights(model, weight_file):
w_file = directories.MODELS + model + '/' + weight_file + '.hdf5'
print("Loading model '%s' weights '%s' from %s" % (model, weight_file, w_file))
f = h5py.File(w_file, mode='r')
g = f['graph']
return [g['param_{}'.format(p)] for p in range(g.attrs['nb_params'])]
def get_model(train, vectors, model_props):
graph = build_graph(train, vectors, model_props)
opt = model_props.get_optimizer()
timer.start("compile")
loss = {}
if model_props.ranking:
loss['y'] = get_sum(train.scale_factor * (0.1 if model_props.reinforce else 1))
else:
if not model_props.anaphoricity_only:
loss['y'] = get_summed_cross_entropy(train.scale_factor)
if model_props.anaphoricity:
loss['anaphoricities'] = get_summed_cross_entropy(train.anaphoricity_scale_factor)
graph.compile(loss=loss, optimizer=opt)
timer.stop("compile")
if model_props.load_weights_from is not None:
set_weights(graph, model_props.load_weights_from, model_props.weights_file)
return graph, opt