-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolution3.py
236 lines (183 loc) · 7.03 KB
/
solution3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
"""Solution."""
import numpy as np
from scipy.optimize import fmin_l_bfgs_b
# import additional ...
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import Matern, RBF, ConstantKernel
import math
# global variables
DOMAIN = np.array([[0, 10]]) # restrict \theta in [0, 10]
SAFETY_THRESHOLD = 4 # threshold, upper bound of SA
ROOT2 = math.sqrt(2)
# TODO: implement a self-contained solution in the BO_algo class.
# NOTE: main() is not called by the checker.
class BO_algo():
def __init__(self):
"""Initializes the algorithm with a parameter configuration."""
# TODO: Define all relevant class members for your BO algorithm here.
f_kernels = [Matern("fixed",nu=2.5), 0.5 * RBF(length_scale=10.0), 0.5 * RBF(length_scale=1.0), 0.5 * RBF(length_scale=0.5)]
f_kernel_hyperparam = 0 #tune this to a value [0,3]
f_kernel = ROOT2 * RBF(length_scale=10)
self.f_gp = GaussianProcessRegressor(kernel = f_kernel, n_restarts_optimizer=0, alpha = 0.15 ** 2)
v_kernels = [Matern("fixed", nu=2.5), ROOT2 * RBF(length_scale=10.0), ROOT2 * RBF(length_scale=1.0), ROOT2 * RBF(length_scale=0.5)]
v_kernel_hyperparam = 0 #tune this to a value[0,3]
v_kernel = ConstantKernel(4, "fixed") + ROOT2 * RBF(length_scale=0.5) #select kernel and set prior mean to 4
self.v_gp = GaussianProcessRegressor(kernel = v_kernel, n_restarts_optimizer=0, alpha = 0.0001 ** 2)
self.best_x = None
self.best_f = 0
self.first_x = None
def next_recommendation(self):
"""
Recommend the next input to sample.
Returns
-------
recommendation: float
the next point to evaluate
"""
# TODO: Implement the function which recommends the next point to query
# using functions f and v.
# In implementing this function, you may use
# optimize_acquisition_function() defined below.
return self.optimize_acquisition_function()
def optimize_acquisition_function(self):
"""Optimizes the acquisition function defined below (DO NOT MODIFY).
Returns
-------
x_opt: float
the point that maximizes the acquisition function, where
x_opt in range of DOMAIN
"""
def objective(x):
return -self.acquisition_function(x)
f_values = []
x_values = []
# Restarts the optimization 20 times and pick best solution
for _ in range(20):
x0 = DOMAIN[:, 0] + (DOMAIN[:, 1] - DOMAIN[:, 0]) * \
np.random.rand(DOMAIN.shape[0])
result = fmin_l_bfgs_b(objective, x0=x0, bounds=DOMAIN,
approx_grad=True)
x_values.append(np.clip(result[0], *DOMAIN[0]))
f_values.append(-result[1])
ind = np.argmax(f_values)
x_opt = x_values[ind].item()
return x_opt
def upper_confidence_bound(self, x, f_beta = 2):
f_pred, f_std = self.f_gp.predict(x.reshape(-1, 1), return_std=True)
ucb = f_pred + f_beta * f_std
return ucb
def safety_bound(self, x, v_beta = 3):
v_pred, v_std = self.v_gp.predict(x.reshape(-1, 1), return_std=True)
lsb = v_pred + v_beta * v_std
return lsb
def acquisition_function(self, x: np.ndarray):
"""Compute the acquisition function for x.
Parameters
----------
x: np.ndarray
x in domain of f, has shape (N, 1)
Returns
------
af_value: np.ndarray
shape (N, 1)
Value of the acquisition function at x
"""
ucb_values = self.upper_confidence_bound(x)
lsb_values = self.safety_bound(x)
l = 10 # cost function hyperparameter
return ucb_values - l * np.maximum(lsb_values - 4, 0)
def add_data_point(self, x: float, f: float, v: float):
"""
Add data points to the model.
Parameters
----------
x: float
structural features
f: float
logP obj func
v: float
SA constraint func
"""
if self.first_x is None:
self.first_x = x + 0.1
# TODO: Add the observed data {x, f, v} to your model.
x = np.array(x).reshape(-1,1)
f = np.array(f).reshape(-1,1)
v = np.array(v).reshape(-1,1)
if f > self.best_f and v < SAFETY_THRESHOLD:
self.best_x = x
self.best_f = f
self.f_gp.fit(x, f)
self.v_gp.fit(x, v)
def get_solution(self):
"""
Return x_opt that is believed to be the maximizer of f.
Returns
-------
solution: float
the optimal solution of the problem
"""
return self.first_x
def plot(self, plot_recommendation: bool = True):
"""Plot objective and constraint posterior for debugging (OPTIONAL).
Parameters
----------
plot_recommendation: bool
Plots the recommended point if True.
"""
pass
# ---
# TOY PROBLEM. To check your code works as expected (ignored by checker).
# ---
def check_in_domain(x: float):
"""Validate input"""
x = np.atleast_2d(x)
return np.all(x >= DOMAIN[None, :, 0]) and np.all(x <= DOMAIN[None, :, 1])
def f(x: float):
"""Dummy logP objective"""
mid_point = DOMAIN[:, 0] + 0.5 * (DOMAIN[:, 1] - DOMAIN[:, 0])
return - np.linalg.norm(x - mid_point, 2)
def v(x: float):
"""Dummy SA"""
return 2.0
def get_initial_safe_point():
"""Return initial safe point"""
x_domain = np.linspace(*DOMAIN[0], 4000)[:, None]
c_val = np.vectorize(v)(x_domain)
x_valid = x_domain[c_val < SAFETY_THRESHOLD]
np.random.seed(0)
np.random.shuffle(x_valid)
x_init = x_valid[0]
return x_init
def main():
"""FOR ILLUSTRATION / TESTING ONLY (NOT CALLED BY CHECKER)."""
# Init problem
agent = BO_algo()
# Add initial safe point
x_init = get_initial_safe_point()
obj_val = f(x_init)
cost_val = v(x_init)
agent.add_data_point(x_init, obj_val, cost_val)
# Loop until budget is exhausted
for j in range(20):
# Get next recommendation
x = agent.next_recommendation()
# Check for valid shape
assert x.shape == (1, DOMAIN.shape[0]), \
f"The function next recommendation must return a numpy array of " \
f"shape (1, {DOMAIN.shape[0]})"
# Obtain objective and constraint observation
obj_val = f(x) + np.randn()
cost_val = v(x) + np.randn()
agent.add_data_point(x, obj_val, cost_val)
# Validate solution
solution = agent.get_solution()
assert check_in_domain(solution), \
f'The function get solution must return a point within the' \
f'DOMAIN, {solution} returned instead'
# Compute regret
regret = (0 - f(solution))
print(f'Optimal value: 0\nProposed solution {solution}\nSolution value '
f'{f(solution)}\nRegret {regret}\nUnsafe-evals TODO\n')
if __name__ == "__main__":
main()