forked from PreferredAI/cornac
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ibpr_example.py
33 lines (24 loc) · 868 Bytes
/
ibpr_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# -*- coding: utf-8 -*-
"""
@author: Le Duy Dung <ddle.2015@smu.edu.sg>
"""
import cornac
from cornac.datasets import MovieLens1M
from cornac.eval_methods import RatioSplit
from cornac.models import IBPR
# Load the MovieLens 1M dataset
ml_1m = MovieLens1M.load_data()
# Instantiate an evaluation method.
ratio_split = RatioSplit(data=ml_1m, test_size=0.2, rating_threshold=1.0, exclude_unknowns=True)
# Instantiate a IBPR recommender model.
ibpr = IBPR(k=10, init_params={'U': None, 'V': None})
# Instantiate evaluation metrics.
rec_20 = cornac.metrics.Recall(k=20)
pre_20 = cornac.metrics.Precision(k=20)
# Instantiate and then run an experiment.
exp = cornac.Experiment(eval_method=ratio_split,
models=[ibpr],
metrics=[rec_20, pre_20],
user_based=True)
exp.run()
print(exp.avg_results)