TorchServe also supports gRPC APIs for both inference and management calls.
TorchServe provides following gRPCs apis
-
- Ping : Gets the health status of the running server
- Predictions : Gets predictions from the served model
-
- RegisterModel : Serve a model/model-version on TorchServe
- UnregisterModel : Free up system resources by unregistering specific version of a model from TorchServe
- ScaleWorker : Dynamically adjust the number of workers for any version of a model to better serve different inference request loads.
- ListModels : Query default versions of current registered models
- DescribeModel : Get detail runtime status of default version of a model
- SetDefault : Set any registered version of a model as default version
By default, TorchServe listens on port 7070 for the gRPC Inference API and 7071 for the gRPC Management API. To configure gRPC APIs on different ports refer configuration documentation
Run following commands to Register, run inference and unregister, densenet161 model from TorchServe model zoo using gRPC python client.
-
Clone serve repo to run this example
git clone https://github.com/pytorch/serve
cd serve
- Install gRPC python dependencies
pip install -U grpcio protobuf grpcio-tools
- Start torchServe
mkdir model_store
torchserve --start
- Generate python gRPC client stub using the proto files
python -m grpc_tools.protoc --proto_path=frontend/server/src/main/resources/proto/ --python_out=ts_scripts --grpc_python_out=ts_scripts frontend/server/src/main/resources/proto/inference.proto frontend/server/src/main/resources/proto/management.proto
- Register densenet161 model
python ts_scripts/torchserve_grpc_client.py register densenet161
- Run inference using
python ts_scripts/torchserve_grpc_client.py infer densenet161 examples/image_classifier/kitten.jpg
- Unregister densenet161 model
python ts_scripts/torchserve_grpc_client.py unregister densenet161