-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpycharm_code.py
57 lines (48 loc) · 1.85 KB
/
pycharm_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import pandas as pd
import streamlit as st
import pickle
import requests
def fetch_poster(movie_id):
url = "https://api.themoviedb.org/3/movie/{}?api_key=ce7b0f74d78219ddfda3207f2386dd01&language=en-US".format(movie_id)
data = requests.get(url)
data = data.json()
poster_path = data['poster_path']
full_path = "https://image.tmdb.org/t/p/w500/" + poster_path
return full_path
def recommend(movie):
movie_index=movies[movies['title']==movie].index[0]
dis=sim[movie_index]
movie_list=sorted(list(enumerate(dis)),reverse=True ,key=lambda x:x[1])
recommended_movie_names = []
recommended_movie_posters = []
for i in movie_list[1:6]:
movie_id = movies.iloc[i[0]].id
#fetch posters from API
recommended_movie_posters.append(fetch_poster(movie_id))
recommended_movie_names.append(movies.iloc[i[0]].title)
return recommended_movie_names , recommended_movie_posters
st.title("Movie Recommendation system")
movie_dict=pickle.load(open('movie_dict.pkl','rb'))
movies=pd.DataFrame(movie_dict)
sim=pickle.load(open('sim.pkl','rb'))
option = st.selectbox(
"Type or select a movie from the dropdown",
(movies['title'].values))
if st.button('Recommend'):
recommended_movie_names, recommended_movie_posters = recommend(option)
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
st.text(recommended_movie_names[0])
st.image(recommended_movie_posters[0])
with col2:
st.text(recommended_movie_names[1])
st.image(recommended_movie_posters[1])
with col3:
st.text(recommended_movie_names[2])
st.image(recommended_movie_posters[2])
with col4:
st.text(recommended_movie_names[3])
st.image(recommended_movie_posters[3])
with col5:
st.text(recommended_movie_names[4])
st.image(recommended_movie_posters[4])