forked from shmsw25/Channel-LM-Prompting
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata.py
357 lines (300 loc) · 13.9 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import os
import csv
import json
import numpy as np
import torch
from util import prepro_sentence, prepro_sentence_pair, \
prepro_sentence_pair_single
def load_data(data_dir, task, k, seed, split):
data_dir = os.path.join(data_dir, "k-shot", task, "{}-{}".format(k, seed))
data = []
if os.path.exists(os.path.join(data_dir, "{}.tsv".format(split))):
with open(os.path.join(data_dir, "{}.tsv".format(split)), "r") as f:
for line in f:
data.append(line.strip().replace("\\n", '\n').split("\t"))
if task=="CoLA":
data = [(sent, label) for _, label, _, sent in data]
elif task=="RTE":
data = [(json.dumps({
"text": p, "question": h[:-1] if h.endswith(".") else h
}), "1" if l=="entailment" else "0")
for _, p, h, l in data[1:]]
elif data[0]==["sentence", "label"]:
data = data[1:]
elif os.path.exists(os.path.join(data_dir, "{}.csv".format(split))):
with open(os.path.join(data_dir, "{}.csv".format(split)), "r") as f:
for label, text in csv.reader(f):
data.append((text, label))
else:
raise NotImplementedError(data_dir)
# # all data should have (input, output) format
# assert np.all([len(dp)==2 for dp in data])
return data
def prepare_data(tokenizer, train_data, test_data, max_length, max_length_per_example,
n_classes=2, templates=None, method_type="generative",
is_training=False, use_demonstrations=False,
ensemble=False, is_null=False):
is_multiple_choice = False
if templates==None:
transform = None
is_multiple_choice = True
templates = []
for _, _, choices_string in test_data:
choices = choices_string.split("!@#")
assert(len(choices)==n_classes)
templates += choices
test_data = [(sent, label) for sent, label, _ in test_data]
if train_data != None:
train_data = [(sent, label) for sent, label, _ in train_data]
elif type(templates)==list:
transform = None
assert len(templates)==n_classes
else:
transform = templates
assert method_type in ["direct", "channel"]
bos_token_id = tokenizer.bos_token_id
eos_token_id = tokenizer.eos_token_id
'''
if method==direct, "sent prompt sent prompt ..."
- prompt should have space
- if demonstrations are used, 2nd sentneces to the input sentence should have space
if method==channel, "prompt sent prompt sent ..."
- input sent should have space
- if demonstrations are used, 2nd prompts to the input prompt should have space
'''
# For calibration method, following Zhao et al. 2021
if is_null:
assert test_data is None
assert method_type=="direct"
test_data = [("N/A", "0")]
prefixes_with_space = None
if transform is None:
templates = [template.strip() for template in templates]
if method_type=="direct":
templates = [" "+template for template in templates]
if use_demonstrations:
test_data = [(" "+sent, label) for sent, label in test_data]
elif method_type=="channel":
test_data = [(" "+sent, label) for sent, label in test_data]
if train_data is not None:
train_data = [(" "+sent, label) for sent, label in train_data]
prefixes_with_space = [tokenizer(" "+template)["input_ids"] for template in templates]
else:
raise NotImplementedError()
if transform is None:
test_inputs = [tokenizer(sent)["input_ids"] for sent, _ in test_data]
truncated = np.sum([len(inputs)>max_length_per_example-16 for inputs in test_inputs])
if truncated > 0:
test_inputs = [inputs[:max_length_per_example-16] for inputs in test_inputs]
print ("%d/%d truncated" % (truncated, len(test_inputs)))
prefixes = [tokenizer(template)["input_ids"] for template in templates]
idx = [idx for idx, _prefixes in enumerate(zip(*prefixes))
if not np.all([_prefixes[0]==_prefix for _prefix in _prefixes])][0]
else:
test_inputs = [transform(dp, tokenizer,
max_length_per_example-16,
groundtruth_only=is_training)
for dp in test_data]
if not is_training:
assert np.all([len(dp)==2 and
np.all([len(dpi)==n_classes for dpi in dp])
for dp in test_inputs])
if is_training:
assert not use_demonstrations
assert not ensemble
input_ids, attention_mask, token_type_ids, classes = [], [], [], []
for i, (test_input, dp) in enumerate(zip(test_inputs, test_data)):
if transform is not None:
test_input, test_output = test_input
encoded = prepro_sentence_pair_single(
test_input, test_output, max_length, bos_token_id, eos_token_id
)
else:
prefix = prefixes[int(dp[1])] if not is_multiple_choice else prefixes[i * n_classes + int(dp[1])]
if method_type=="channel":
encoded = prepro_sentence_pair_single(
prefix, test_input, max_length, bos_token_id, eos_token_id)
elif method_type=="direct":
encoded = prepro_sentence_pair_single(
test_input + prefix[:idx], prefix[idx:], max_length, bos_token_id, eos_token_id)
else:
raise NotImplementedError()
input_ids.append(encoded[0])
attention_mask.append(encoded[1])
token_type_ids.append(encoded[2])
classes.append(int(dp[1]))
return dict(input_ids=torch.LongTensor(input_ids),
attention_mask=torch.LongTensor(attention_mask),
token_type_ids=torch.LongTensor(token_type_ids),
classes=torch.LongTensor(classes))
if use_demonstrations:
if transform is not None:
raise NotImplementedError()
if ensemble:
return prepare_data_for_parallel(
tokenizer, train_data, test_data,
max_length, max_length_per_example,
method_type, n_classes,
test_inputs, prefixes, idx, prefixes_with_space,
bos_token_id, eos_token_id)
assert train_data is not None
demonstrations = []
np.random.shuffle(train_data)
for sent, label in train_data:
if len(demonstrations)>0:
if method_type=="direct":
sent = " " + sent
elif method_type=="channel":
prefixes = prefixes_with_space
if transform is None:
tokens = tokenizer(sent)["input_ids"][:max_length_per_example]
else:
tokens = transform(sent, tokenizer, max_length_per_example)
prefix = prefixes[(int(label))]
if method_type=="channel":
tokens = prefix + tokens
elif method_type=="direct":
tokens = tokens + prefix
else:
raise NotImplementedError()
demonstrations += tokens
if transform is None:
# check if idx is set well
for i in range(n_classes):
for j in range(i+1, n_classes):
assert prefixes[i][:idx]==prefixes[j][:idx]
assert prefixes[i][idx]!=prefixes[j][idx]
input_tensors = []
for i in range(n_classes):
if is_multiple_choice:
input_ids, attention_mask, token_type_ids = [], [], []
for j, test_input in enumerate(test_inputs):
prefix = prefixes[j * n_classes + i].copy()
if method_type=="channel":
encoded = prepro_sentence_pair_single(
prefix, test_input, max_length, bos_token_id, eos_token_id)
elif method_type=="direct":
encoded = prepro_sentence_pair_single(
test_input + prefix[:idx], prefix[idx:], max_length, bos_token_id, eos_token_id)
input_ids.append(encoded[0])
attention_mask.append(encoded[1])
token_type_ids.append(encoded[2])
tensor = dict(input_ids=torch.LongTensor(input_ids),
attention_mask=torch.LongTensor(attention_mask),
token_type_ids=torch.LongTensor(token_type_ids))
elif transform is None:
prefix = prefixes[i].copy()
if method_type=="channel":
if use_demonstrations:
prefix = demonstrations.copy() + prefix
tensor = prepro_sentence_pair([prefix], test_inputs, max_length,
bos_token_id, eos_token_id,
allow_truncation=use_demonstrations)
elif method_type=="direct":
if use_demonstrations:
prompt = [demonstrations.copy() + test_input + prefix[:idx] for test_input in test_inputs]
else:
prompt = [test_input + prefix[:idx] for test_input in test_inputs]
tensor = prepro_sentence_pair(prompt,
[prefix[idx:]], max_length,
bos_token_id, eos_token_id,
allow_truncation=use_demonstrations)
else:
raise NotImplementedError()
else:
input_ids, attention_mask, token_type_ids = [], [], []
for input_, output_ in test_inputs:
encoded = prepro_sentence_pair_single(
input_[i], output_[i], max_length,
bos_token_id,
None if is_generation else eos_token_id,
allow_truncation=False)
input_ids.append(encoded[0])
attention_mask.append(encoded[1])
token_type_ids.append(encoded[2])
tensor = dict(input_ids=torch.LongTensor(input_ids),
attention_mask=torch.LongTensor(attention_mask),
token_type_ids=torch.LongTensor(token_type_ids))
tensor["classes"] = torch.LongTensor([i] * len(tensor["input_ids"]))
input_tensors.append(tensor)
return input_tensors
def prepare_data_for_parallel(tokenizer, train_data, test_data,
max_length, max_length_per_example,
method_type, n_classes,
test_inputs, prefixes, idx, prefixes_with_space,
bos_token_id, eos_token_id):
# get len(train_data) number of demonstrations
assert train_data is not None
demonstrations_list = []
np.random.shuffle(train_data)
for sent, label in train_data:
tokens = tokenizer(sent)["input_ids"][:max_length_per_example]
prefix = prefixes[(int(label))]
if method_type=="channel":
tokens = prefix + tokens
elif method_type=="direct":
tokens = tokens + prefix
else:
raise NotImplementedError()
demonstrations_list.append(tokens)
# check if idx is set well
for i in range(n_classes):
for j in range(i+1, n_classes):
assert prefixes[i][:idx]==prefixes[j][:idx]
assert prefixes[i][idx]!=prefixes[j][idx]
input_tensors = []
for i in range(n_classes):
if method_type=="channel":
prefix = prefixes_with_space[i].copy()
prompt = [demonstrations + prefix
for demonstrations in demonstrations_list]
tensor = prepro_sentence_pair(
prompt, test_inputs, max_length,
bos_token_id, eos_token_id,
allow_truncation=True)
elif method_type=="direct":
prefix = prefixes[i].copy()
prompt = [demonstrations.copy() + test_input + prefix[:idx]
for test_input in test_inputs
for demonstrations in demonstrations_list]
tensor = prepro_sentence_pair(prompt,
[prefix[idx:]], max_length,
bos_token_id, eos_token_id,
allow_truncation=True)
else:
raise NotImplementedError()
input_tensors.append(tensor)
return input_tensors
def load_prompt(prompts_dir, prompt_task, prompt_file_len):
prompt_files = ["channel_prompts", "natural_prompts", "good_prompts"]
if prompt_file_len < 0:
prompt_files.append("pile")
else:
prompt_files.append("pile_n={}".format(prompt_file_len))
prompts = {}
for prompt_file in prompt_files:
with open(os.path.join(prompts_dir, prompt_file+".json"), 'r') as f:
prompts.update(json.load(f))
if prompt_task not in prompts:
raise NotImplementedError()
return prompts[prompt_task]
def output_metrices(args, dev_results, test_result, prompt, n_prefix):
metrices = {
"taskA": args.task,
"taskB": args.prompt_task,
"target_prompt": prompt,
"prompt_f1_threshold": args.f1_threshold,
"prompt_file_len": args.prompt_file_len,
"optimize_against_A": args.bad,
"batch_size": args.batch_size,
"gamma": args.aux_weight,
"n_prefix": n_prefix,
"num_training_steps": args.num_training_steps,
"eval_period": args.eval_period,
"warmup_steps": args.warmup_steps,
"seed_results": dev_results,
"test_result": test_result,
"model": args.gpt2
}
with open(os.path.join(args.out_dir, "metrics.json"), 'w') as f:
json.dump(metrices, f)