forked from hongzimao/deeprm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlauncher.py
executable file
·163 lines (147 loc) · 5.53 KB
/
launcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
os.environ["THEANO_FLAGS"] = "device=cpu,floatX=float32"
import sys
import getopt
import matplotlib
matplotlib.use('Agg')
import parameters
import pg_re
import pg_su
import slow_down_cdf
def script_usage():
print('--exp_type <type of experiment> \n'
'--num_res <number of resources> \n'
'--num_nw <number of visible new work> \n'
'--simu_len <simulation length> \n'
'--num_ex <number of examples> \n'
'--num_seq_per_batch <rough number of samples in one batch update> \n'
'--eps_max_len <episode maximum length (terminated at the end)> \n'
'--num_epochs <number of epoch to do the training>\n'
'--time_horizon <time step into future, screen height> \n'
'--res_slot <total number of resource slots, screen width> \n'
'--max_job_len <maximum new job length> \n'
'--max_job_size <maximum new job resource request> \n'
'--new_job_rate <new job arrival rate> \n'
'--dist <discount factor> \n'
'--lr_rate <learning rate> \n'
'--ba_size <batch size> \n'
'--pg_re <parameter file for pg network> \n'
'--v_re <parameter file for v network> \n'
'--q_re <parameter file for q network> \n'
'--out_freq <network output frequency> \n'
'--ofile <output file name> \n'
'--log <log file name> \n'
'--render <plot dynamics> \n'
'--unseen <generate unseen example> \n')
def main():
pa = parameters.Parameters()
type_exp = 'pg_re' # 'pg_su' 'pg_su_compact' 'v_su', 'pg_v_re', 'pg_re', q_re', 'test'
pg_resume = None
v_resume = None
q_resume = None
log = None
render = False
try:
opts, args = getopt.getopt(
sys.argv[1:],
"hi:o:", ["exp_type=",
"num_res=",
"num_nw=",
"simu_len=",
"num_ex=",
"num_seq_per_batch=",
"eps_max_len=",
"num_epochs=",
"time_horizon=",
"res_slot=",
"max_job_len=",
"max_job_size=",
"new_job_rate=",
"dist=",
"lr_rate=",
"ba_size=",
"pg_re=",
"v_re=",
"q_re=",
"out_freq=",
"ofile=",
"log=",
"render=",
"unseen="])
except getopt.GetoptError:
script_usage()
sys.exit(2)
for opt, arg in opts:
if opt == '-h':
script_usage()
sys.exit()
elif opt in ("-e", "--exp_type"):
type_exp = arg
elif opt in ("-n", "--num_res"):
pa.num_res = int(arg)
elif opt in ("-w", "--num_nw"):
pa.num_nw = int(arg)
elif opt in ("-s", "--simu_len"):
pa.simu_len = int(arg)
elif opt in ("-n", "--num_ex"):
pa.num_ex = int(arg)
elif opt in ("-sp", "--num_seq_per_batch"):
pa.num_seq_per_batch = int(arg)
elif opt in ("-el", "--eps_max_len"):
pa.episode_max_length = int(arg)
elif opt in ("-ne", "--num_epochs"):
pa.num_epochs = int(arg)
elif opt in ("-t", "--time_horizon"):
pa.time_horizon = int(arg)
elif opt in ("-rs", "--res_slot"):
pa.res_slot = int(arg)
elif opt in ("-ml", "--max_job_len"):
pa.max_job_len = int(arg)
elif opt in ("-ms", "--max_job_size"):
pa.max_job_size = int(arg)
elif opt in ("-nr", "--new_job_rate"):
pa.new_job_rate = float(arg)
elif opt in ("-d", "--dist"):
pa.discount = float(arg)
elif opt in ("-l", "--lr_rate"):
pa.lr_rate = float(arg)
elif opt in ("-b", "--ba_size"):
pa.batch_size = int(arg)
elif opt in ("-p", "--pg_re"):
pg_resume = arg
elif opt in ("-v", "--v_re"):
v_resume = arg
elif opt in ("-q", "--q_re"):
q_resume = arg
elif opt in ("-f", "--out_freq"):
pa.output_freq = int(arg)
elif opt in ("-o", "--ofile"):
pa.output_filename = arg
elif opt in ("-lg", "--log"):
log = arg
elif opt in ("-r", "--render"):
render = (arg == 'True')
elif opt in ("-u", "--unseen"):
pa.generate_unseen = (arg == 'True')
else:
script_usage()
sys.exit()
pa.compute_dependent_parameters()
if type_exp == 'pg_su':
pg_su.launch(pa, pg_resume, render, repre='image', end='all_done')
elif type_exp == 'v_su':
v_su.launch(pa, v_resume, render)
elif type_exp == 'pg_re':
pg_re.launch(pa, pg_resume, render, repre='image', end='all_done')
elif type_exp == 'pg_v_re':
pg_v_re.launch(pa, pg_resume, v_resume, render)
elif type_exp == 'test':
# quick_test.launch(pa, pg_resume, render)
slow_down_cdf.launch(pa, pg_resume, render, True)
# elif type_exp == 'q_re':
# q_re.launch(pa, q_resume, render)
else:
print("Error: unkown experiment type " + str(type_exp))
exit(1)
if __name__ == '__main__':
main()