-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAVL.cpp
221 lines (202 loc) · 5.18 KB
/
AVL.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#include <iostream>
#include<iomanip>
#include <time.h>
#include <vector>
#include <fstream>
using namespace std;
vector<int> numbers;
struct node
{
public:
int data, height;
node *leftChild, *rightChild;
};
node* root = NULL;
int findMin(node *p) // finds the smallest node in the tree
{
while (p->leftChild != NULL)
p = p->leftChild;
return p->data;
}
int findMax(node *p) // finds the largest node in the tree
{
while(p->rightChild != NULL)
p = p->rightChild;
return p->data;
}
int max(int a, int b) // gets the max of two integers
{
if(a > b)
return a;
else
return b;
}
int height(node *p) // gets the height of the tree
{
if(p == NULL)
return -1;
else
{
p->height = max(height(p->leftChild), height(p->rightChild)) + 1;
}
return p->height;
}
node* newNode(int element) // helper function to return a new node with empty subtrees
{
node* newPtr = new node;
newPtr->data = element;
newPtr->leftChild = NULL;
newPtr->rightChild = NULL;
newPtr->height = 1;
return newPtr;
}
node* rightRotate(node* p) // function to right rotate a tree rooted at p
{
node* child = p->leftChild; // rotate the tree
p->leftChild = child->rightChild;
child->rightChild = p;
// update the height for the nodes
p->height = height(p);
child->height = height(child);
// return new root
return child;
}
node* leftRotate(node* p) // function to left rotate a tree rooted at p
{
node* child = p->rightChild; // perform the rotation
p->rightChild = child->leftChild;
child->leftChild = p;
// update the heights for the nodes
p->height = height(p);
child->height = height(child);
// return new root
return child;
}
int getBalance(node *p)
{
if(p == NULL)
return 0;
else
return height(p->leftChild) - height(p->rightChild);
}
// recursive version of BST insert to insert the element in a sub tree rooted with root
// which returns new root of subtree
node* insert(node*& p, int element)
{
// perform the normal BST insertion
if(p == NULL) // if the tree is empty
return(newNode(element));
if(element < p->data)
{
p->leftChild = insert(p->leftChild, element);
}
else
{
p->rightChild = insert(p->rightChild, element);
}
// update the height for this node
p->height = height(p);
// get the balance factor to see if the tree is unbalanced
int balance = getBalance(p);
// the tree is unbalanced, there are 4 different types of rotation to make
// Single Right Rotation (Left Left Case)
if(balance > 1 && element < p->leftChild->data)
{
return rightRotate(p);
}
// Single Left Rotation (Right Right Case)
if(balance < -1 && element > p->rightChild->data)
{
return leftRotate(p);
}
// Left Right Rotation (double left rotation)
if(balance > 1 && element > p->leftChild->data)
{
p->leftChild = leftRotate(p->leftChild);
return rightRotate(p);
}
// Right Left Rotation
if(balance < -1 && element < p->rightChild->data)
{
p->rightChild = rightRotate(p->rightChild);
return leftRotate(p);
}
// cout << "Height: " << n->height << endl;
// return the unmodified root pointer in the case that the tree does not become unbalanced
return p;
}
void inorder(node *p)
{
if(p != NULL)
{
inorder(p->leftChild);
cout << p->data << ", ";
inorder(p->rightChild);
}
}
void preorder(node *p)
{
if(p != NULL)
{
cout << p->data << ", ";
preorder(p->leftChild);
preorder(p->rightChild);
}
/* else {
cout << "p is null" << endl;
}
*/
}
void print(node* root)
{
/*cout << "Min Value: " << findMin(root) << endl;
cout << "Max Value: " << findMax(root) << endl;
cout << "Pre Order: ";
preorder(root); */
cout << endl << "Inorder: ";
inorder(root);
cout << endl << endl << endl << endl;
}
void read()
{
int num;
ifstream file_save("data.txt");
if(file_save.is_open())
{
while(!file_save.eof())
{
file_save >> num;
numbers.push_back(num);
}
file_save.close();
}
else
{
cout << "Error in opening file!!" << endl; //File can't be opened
}
}
int main()
{
double duration;
time_t begin = time(0);
read();
int x = 0;
int track = 0;
for (std::vector<int>::const_iterator i = numbers.begin(); i != numbers.begin() + 100000; ++i)
{
root = insert(root, numbers[x]);
x++;
track++;
if( (track % 10000) == 0)
{
cout << track << " iterations" << endl;
time_t now = time(0);
cout << now - begin << " seconds" << endl;
}
}
time_t end = time(0);
duration = end - begin;
// print(root);
cout << "The algorithm took " << duration << " seconds to complete." << endl;
return 0;
}