-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathcreate_dataset_for_reid.py
116 lines (93 loc) · 4.09 KB
/
create_dataset_for_reid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from conditional_gan import make_generator
import cmd
from pose_dataset import PoseHMDataset
import numpy as np
from tqdm import tqdm
from skimage.io import imsave
import os
import pandas as pd
import pose_transform
import pose_utils
from itertools import permutations
from shutil import copy
from collections import defaultdict
def filter_not_valid(df_keypoints):
def check_valid(x):
kp_array = pose_utils.load_pose_cords_from_strings(x['keypoints_y'], x['keypoints_x'])
distractor = x['name'].startswith('-1') or x['name'].startswith('0000')
return pose_transform.check_valid(kp_array) and not distractor
return df_keypoints[df_keypoints.apply(check_valid, axis=1)].copy()
def make_pairs(df, pairs_for_each=10):
fr, to = [], []
for image_name in df['name']:
fr_names = [image_name] * pairs_for_each
to_names = df['name'].sample(n=pairs_for_each)
fr += list(fr_names)
to += list(to_names)
pair_df = pd.DataFrame(index=range(len(fr)))
pair_df['from'] = fr
pair_df['to'] = to
return pair_df
def generate_images(dataset, generator, use_input_pose, out_dir, store_train_images):
number = 0
def deprocess_image(img):
return (255 * ((img + 1) / 2.0)).astype(np.uint8)
if not os.path.exists(out_dir):
os.makedirs(out_dir)
for _ in tqdm(range(dataset._pairs_file_test.shape[0])):
number += 1
batch, name = dataset.next_generator_sample_test(with_names=True)
out = generator.predict(batch)
#from_image = deprocess_image(batch[0])
out_index = 2 if use_input_pose else 1
#to_image = deprocess_image(batch[out_index])
generated_image = deprocess_image(out[out_index])
out = np.squeeze(generated_image)# np.concatenate([from_image, to_image, generated_image], axis=1))
name = name.iloc[0]['from'].replace('.jpg', 'g' + str(number) + '.jpg')
imsave(os.path.join(out_dir, name), out)
if store_train_images:
for name in tqdm(os.listdir(dataset._images_dir_train)):
copy(os.path.join(dataset._images_dir_train, name), out_dir)
def create_train_file(generated_images_folder, train_file_name, generated_as_separate):
train_f = open(train_file_name, 'w')
cls_to_num = {}
for name in os.listdir(generated_images_folder):
cls = name.split('_')[0]
cls = int(cls)
if cls not in cls_to_num:
cls_to_num[cls] = len(cls_to_num)
# print cls_to_num
for name in os.listdir(generated_images_folder):
attr = name.replace('.', '_').split('_')
cls, index = attr[0], attr[-2]
cls = int(cls)
if generated_as_separate and ('g' in index):
num = cls_to_num[cls] + len(cls_to_num)
else:
num = cls_to_num[cls]
print >>train_f, "%s %s" % ('dataset/bounding_box_train/' + name, num)
train_f.close()
def test():
args = cmd.args()
args.images_dir_test = args.images_dir_train
args.pairs_file_test = 'data/market-re-id-pairs.csv'
pairs_for_each = 2
train_file_name = 'train.txt'
store_train_images = True
generated_as_separate = False
df_keypoints = pd.read_csv(args.annotations_file_train, sep=':')
df = filter_not_valid(df_keypoints)
print ('Compute pair for train re-id...')
pairs_df_train = make_pairs(df, pairs_for_each)
print ('Number of pairs: %s' % len(pairs_df_train))
pairs_df_train.to_csv('data/market-re-id-pairs.csv', index=False)
dataset = PoseHMDataset(test_phase=True, **vars(args))
generator = make_generator(args.image_size, args.use_input_pose, args.warp_skip, args.disc_type,
args.warp_agg, args.use_bg, args.pose_rep_type)
assert (args.generator_checkpoint is not None)
generator.load_weights(args.generator_checkpoint)
print ("Generate images...")
generate_images(dataset, generator, args.use_input_pose, args.generated_images_dir, store_train_images=store_train_images)
print ("Creating train file...")
create_train_file(args.generated_images_dir, train_file_name, generated_as_separate)
test()