-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathVP_NFSnets1.py
268 lines (200 loc) · 9.32 KB
/
VP_NFSnets1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# author Zihao Hu
# time 5/11/2020
import sys
sys.path.append('PINNs-master/Utilities')
import tensorflow as tf
import numpy as np
import time
# set random seed
np.random.seed(1234)
tf.set_random_seed(1234)
class VPNSFnet:
# Initialize the class
def __init__(self, xb, yb, ub, vb, x, y, layers):
# remove the second bracket
Xb = np.concatenate([xb, yb], 1)
X = np.concatenate([x, y], 1)
self.lowb = Xb.min(0) # minimal number in each column
self.upb = Xb.max(0)
self.Xb = Xb
self.X = X
self.xb = Xb[:, 0:1]
self.yb = Xb[:, 1:2]
self.x = X[:, 0:1]
self.y = X[:, 1:2]
self.ub = ub
self.vb = vb
self.layers = layers
# Initialize NN
self.weights, self.biases = self.initialize_NN(layers)
self.learning_rate = tf.placeholder(tf.float32, shape=[])
# Initialize parameters
# when applying dynamic weighting
# self.alpha = tf.Variable([0.0], dtype=tf.float32)
# self.beta = tf.Variable([0.0], dtype=tf.float32)
# tf placeholders and graph
self.sess = tf.Session(config=tf.compat.v1.ConfigProto(allow_soft_placement=True,
log_device_placement=True))
self.x_boundary_tf = tf.placeholder(tf.float32, shape=[None, self.xb.shape[1]])
self.y_boundary_tf = tf.placeholder(tf.float32, shape=[None, self.yb.shape[1]])
self.u_boundary_tf = tf.placeholder(tf.float32, shape=[None, self.ub.shape[1]])
self.v_boundary_tf = tf.placeholder(tf.float32, shape=[None, self.vb.shape[1]])
self.x_tf = tf.placeholder(tf.float32, shape=[None, self.x.shape[1]])
self.y_tf = tf.placeholder(tf.float32, shape=[None, self.y.shape[1]])
self.u_boundary_pred, self.v_boundary_pred, self.p_boundary_pred = \
self.net_NS(self.x_boundary_tf, self.y_boundary_tf)
self.u_pred, self.v_pred, self.p_pred, self.f_u_pred, self.f_v_pred, self.f_e_pred = \
self.net_f_NS(self.x_tf, self.y_tf)
alpha = 1
# set loss function
self.loss = alpha * tf.reduce_mean(tf.square(self.u_boundary_tf - self.u_boundary_pred)) + \
alpha * tf.reduce_mean(tf.square(self.v_boundary_tf - self.v_boundary_pred)) + \
tf.reduce_mean(tf.square(self.f_u_pred)) + \
tf.reduce_mean(tf.square(self.f_v_pred)) + \
tf.reduce_mean(tf.square(self.f_e_pred))
# set optimizer
self.optimizer = tf.contrib.opt.ScipyOptimizerInterface(self.loss,
method='L-BFGS-B',
options={'maxiter': 50000,
'maxfun': 50000,
'maxcor': 50,
'maxls': 50,
'ftol': 1.0 * np.finfo(float).eps})
self.optimizer_Adam = tf.train.AdamOptimizer(self.learning_rate)# add learning rate here
self.train_op_Adam = self.optimizer_Adam.minimize(self.loss)
init = tf.global_variables_initializer()
self.sess.run(init)
# do not need adaptation
def initialize_NN(self, layers):
weights = []
biases = []
num_layers = len(layers)
for l in range(0, num_layers - 1):
W = self.xavier_init(size=[layers[l], layers[l + 1]])
b = tf.Variable(tf.zeros([1, layers[l + 1]], dtype=tf.float32), dtype=tf.float32)
weights.append(W)
biases.append(b)
return weights, biases
# do not need adaptation
def xavier_init(self, size):
in_dim = size[0]
out_dim = size[1]
xavier_stddev = np.sqrt(2 / (in_dim + out_dim))
return tf.Variable(tf.random.truncated_normal([in_dim, out_dim], stddev=xavier_stddev), dtype=tf.float32)
# do not need adaptation
def neural_net(self, X, weights, biases):
num_layers = len(weights) + 1
H = 2.0 * (X - self.lowb) / (self.upb - self.lowb) - 1.0
for l in range(0, num_layers - 2):
W = weights[l]
b = biases[l]
H = tf.tanh(tf.add(tf.matmul(H, W), b))
W = weights[-1]
b = biases[-1]
Y = tf.add(tf.matmul(H, W), b)
return Y
# ###################without assume###############
# supervised data-driven
def net_NS(self, x, y):
u_v_p = self.neural_net(tf.concat([x, y], 1), self.weights, self.biases)
u = u_v_p[:, 0:1]
v = u_v_p[:, 1:2]
p = u_v_p[:, 2:3]
return u, v, p
# unsupervised train
def net_f_NS(self, x, y):
u_v_p = self.neural_net(tf.concat([x, y], 1), self.weights, self.biases)
u = u_v_p[:, 0:1]
v = u_v_p[:, 1:2]
p = u_v_p[:, 2:3]
u_x = tf.gradients(u, x)[0]
u_y = tf.gradients(u, y)[0]
u_xx = tf.gradients(u_x, x)[0]
u_yy = tf.gradients(u_y, y)[0]
v_x = tf.gradients(v, x)[0]
v_y = tf.gradients(v, y)[0]
v_xx = tf.gradients(v_x, x)[0]
v_yy = tf.gradients(v_y, y)[0]
p_x = tf.gradients(p, x)[0]
p_y = tf.gradients(p, y)[0]
f_u = (u * u_x + v * u_y) + p_x - (1.0/40) * (u_xx + u_yy)
f_v = (u * v_x + v * v_y) + p_y - (1.0/40) * (v_xx + v_yy)
f_e = u_x + v_y
return u, v, p, f_u, f_v, f_e
def callback(self, loss):
print('Loss: %.3e' % loss)
# train
def Adam_train(self, nIter=5000, learning_rate=1e-3):
tf_dict = {self.x_boundary_tf: self.xb, self.y_boundary_tf: self.yb,
self.u_boundary_tf: self.ub, self.v_boundary_tf: self.vb,
self.x_tf: self.x, self.y_tf: self.y, self.learning_rate: learning_rate}
start_time = time.time()
for it in range(nIter):
self.sess.run(self.train_op_Adam, tf_dict)
# Print
if it % 10 == 0:
elapsed = time.time() - start_time
loss_value = self.sess.run(self.loss, tf_dict)
print('It: %d, Loss: %.3e, Time: %.2f' %
(it, loss_value, elapsed))
start_time = time.time()
def BFGS_train(self):
tf_dict = {self.x_boundary_tf: self.xb, self.y_boundary_tf: self.yb,
self.u_boundary_tf: self.ub, self.v_boundary_tf: self.vb,
self.x_tf: self.x, self.y_tf: self.y}
self.optimizer.minimize(self.sess,
feed_dict=tf_dict,
fetches=[self.loss],
loss_callback=self.callback)
# 不需要改变 可能需要注意x_tf等
def predict(self, x_star, y_star):
tf_dict = {self.x_tf: x_star, self.y_tf: y_star}
u_star = self.sess.run(self.u_pred, tf_dict)
v_star = self.sess.run(self.v_pred, tf_dict)
p_star = self.sess.run(self.p_pred, tf_dict)
return u_star, v_star, p_star
if __name__ == "__main__":
# when model is directly run this will implement
# supervised
N_train = 2601
layers = [2, 50, 50, 50, 50, 3]
# Load Data
Re = 40
lam = 0.5 * Re - np.sqrt(0.25 * (Re ** 2) + 4 * (np.pi ** 2))
x = np.linspace(-0.5, 1.0, 101)
y = np.linspace(-0.5, 1.5, 101)
yb1 = np.array([-0.5] * 100)
yb2 = np.array([1] * 100)
xb1 = np.array([-0.5] * 100)
xb2 = np.array([1.5] * 100)
y_train1 = np.concatenate([y[1:101], y[0:100], xb1, xb2], 0)
x_train1 = np.concatenate([yb1, yb2, x[0:100], x[1:101]], 0)
xb_train = x_train1.reshape(x_train1.shape[0], 1)
yb_train = y_train1.reshape(y_train1.shape[0], 1)
ub_train = 1 - np.exp(lam * xb_train) * np.cos(2 * np.pi * yb_train)
vb_train = lam / (2 * np.pi) * np.exp(lam * xb_train) * np.sin(2 * np.pi * yb_train)
x_train = (np.random.rand(N_train, 1) - 1 / 3) * 3 / 2
y_train = (np.random.rand(N_train, 1) - 1 / 4) * 2
model = VPNSFnet(xb_train, yb_train, ub_train, vb_train,
x_train, y_train, layers)
model.Adam_train(5000, 1e-3)
model.Adam_train(5000, 1e-4)
model.Adam_train(50000, 1e-5)
model.Adam_train(50000, 1e-6)
model.BFGS_train()
# Test Data
np.random.seed(1234)
x_star = (np.random.rand(1000, 1) - 1 / 3) * 3 / 2
y_star = (np.random.rand(1000, 1) - 1 / 4) * 2
u_star = 1 - np.exp(lam * x_star) * np.cos(2 * np.pi * y_star)
v_star = (lam / (2 * np.pi)) * np.exp(lam * x_star) * np.sin(2 * np.pi * y_star)
p_star = 0.5 * (1 - np.exp(2 * lam * x_star))
# Prediction
u_pred, v_pred, p_pred = model.predict(x_star, y_star)
# Error
error_u = np.linalg.norm(u_star - u_pred, 2) / np.linalg.norm(u_star, 2)
error_v = np.linalg.norm(v_star - v_pred, 2) / np.linalg.norm(v_star, 2)
error_p = np.linalg.norm(p_star - p_pred, 2) / np.linalg.norm(p_star, 2)
print('Error u: %e' % error_u)
print('Error v: %e' % error_v)
print('Error p: %e' % error_p)